-
Notifications
You must be signed in to change notification settings - Fork 128
/
Copy pathnitaj_crt_rsa.py
44 lines (37 loc) · 1.51 KB
/
nitaj_crt_rsa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import logging
import os
import sys
from math import gcd
from math import log
from math import sqrt
from sage.all import RR
from sage.all import Zmod
path = os.path.dirname(os.path.dirname(os.path.dirname(os.path.realpath(os.path.abspath(__file__)))))
if sys.path[1] != path:
sys.path.insert(1, path)
from shared.small_roots import herrmann_may_multivariate
def attack(N, e, delta, m, t, check_bounds=True):
"""
Recovers the prime factors if one of the CRT-RSA private exponents is too small.
More information: Nitaj A., "A new attack on RSA and CRT-RSA" (Section 4)
:param N: the modulus
:param e: the public exponent
:param delta: the parameter delta such that dp <= N^delta
:param m: the parameter m for small roots
:param t: the parameter t for small roots
:param check_bounds: perform bounds check (default: True)
:return: a tuple containing the prime factors, or None if the factors could not be found
"""
alpha = log(e, N)
assert not check_bounds or 2 * delta < sqrt(2) / 2 - alpha, f"Bounds check failed ({2 * delta} < {sqrt(2) / 2 - alpha})."
x, y = Zmod(N)["x", "y"].gens()
f = x + e * y
X = int(RR(N) ** delta)
Y = int(e * RR(N) ** (delta - 1 / 2)) # Equivalent to N^(alpha + delta - 1 / 2)
logging.info(f"Trying {m = }, {t = }...")
for x0, y0 in herrmann_may_multivariate.modular_multivariate(f, N, m, t, [X, Y]):
pz = int(f(x0, y0))
p = gcd(pz, N)
if 1 < p < N and N % p == 0:
return p, N // p
return None