-
Notifications
You must be signed in to change notification settings - Fork 128
/
Copy pathlattice.py
55 lines (42 loc) · 1.63 KB
/
lattice.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import logging
def shortest_vectors(B):
"""
Computes the shortest non-zero vectors in a lattice.
:param B: the basis of the lattice
:return: a generator generating the shortest non-zero vectors
"""
logging.debug(f"Computing shortest vectors in {B.nrows()} x {B.ncols()} matrix...")
B = B.LLL()
for row in B.rows():
if not row.is_zero():
yield row
# Babai's Nearest Plane Algorithm from "Lecture 3: CVP Algorithm" by Oded Regev.
def _closest_vectors_babai(B, t):
B = B.LLL()
for G in B.gram_schmidt():
b = t
for j in reversed(range(B.nrows())):
b -= round((b * G[j]) / (G[j] * G[j])) * B[j]
yield t - b
def _closest_vectors_embedding(B, t):
B_ = B.new_matrix(B.nrows() + 1, B.ncols() + 1)
for row in range(B.nrows()):
for col in range(B.ncols()):
B_[row, col] = B[row, col]
for col in range(B.ncols()):
B_[B.nrows(), col] = t[col]
B_[B.nrows(), B.ncols()] = 1
yield from shortest_vectors(B_)
def closest_vectors(B, t, algorithm="embedding"):
"""
Computes the closest vectors in a lattice to a target vector.
:param B: the basis of the lattice
:param t: the target vector
:param algorithm: the algorithm to use, can be "babai" or "embedding" (default: "embedding")
:return: a generator generating the shortest non-zero vectors
"""
logging.debug(f"Computing closest vectors in {B.nrows()} x {B.ncols()} matrix...")
if algorithm == "babai":
yield from _closest_vectors_babai(B, t)
elif algorithm == "embedding":
yield from _closest_vectors_embedding(B, t)