-
Notifications
You must be signed in to change notification settings - Fork 128
/
Copy pathaono.py
60 lines (50 loc) · 1.9 KB
/
aono.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import logging
from itertools import product
from math import prod
from sage.all import ZZ
from sage.all import xgcd
from shared import small_roots
def integer_multivariate(F, e, m, X, roots_method="groebner"):
"""
Computes small integer roots of a list of polynomials.
More information: Aono Y., "Minkowski sum based lattice construction for multivariate simultaneous Coppersmith's technique and applications to RSA" (Section 4)
:param F: the list of polynomials
:param e: the list of e values
:param m: the parameter m
:param X: an approximate bound on the x roots
:param roots_method: the method to use to find roots (default: "groebner")
:return: a generator generating small roots (dicts of (x0: x0root, x1: x1root, ..., y: yroot) entries) of the polynomials
"""
# We need lexicographic ordering for .lc() below.
pr = F[0].parent().change_ring(ZZ, order="lex")
x = pr.gens()
l = len(e)
for k in range(l):
F[k] = pr(F[k])
logging.debug("Generating shifts...")
g = []
for k in range(l):
gk = {}
for i in range(m + 1):
for j in range(i + 1):
gk[i, j] = x[k] ** (i - j) * F[k] ** j * e[k] ** (m - j)
g.append(gk)
Ig = {}
for tup in product(*g):
g_ = prod(g[k][tup[k]] for k in range(l))
index = tuple(g_.exponents()[0])
if index not in Ig:
Ig[index] = []
Ig[index].append(g_)
shifts = []
for g in Ig.values():
gp = g[0]
lc = gp.lc()
for gi in g[1:]:
lc, s, t = xgcd(lc, gi.lc())
gp = s * gp + t * gi
shifts.append(gp)
L, monomials = small_roots.create_lattice(pr, shifts, X)
L = small_roots.reduce_lattice(L)
polynomials = small_roots.reconstruct_polynomials(L, None, prod(e) ** m, monomials, X)
yield from small_roots.find_roots(pr, polynomials, method=roots_method)