-
Notifications
You must be signed in to change notification settings - Fork 128
/
Copy pathhowgrave_graham.py
40 lines (32 loc) · 1.18 KB
/
howgrave_graham.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import logging
from sage.all import ZZ
from shared import small_roots
def modular_univariate(f, N, m, t, X):
"""
Computes small modular roots of a univariate polynomial.
More information: May A., "New RSA Vulnerabilities Using Lattice Reduction Methods" (Section 3.2)
:param f: the polynomial
:param N: the modulus
:param m: the amount of normal shifts to use
:param t: the amount of additional shifts to use
:param X: an approximate bound on the roots
:return: a generator generating small roots of the polynomial
"""
f = f.monic().change_ring(ZZ)
pr = f.parent()
x = pr.gen()
delta = f.degree()
logging.debug("Generating shifts...")
shifts = []
for i in range(m):
for j in range(delta):
g = x ** j * N ** (m - i) * f ** i
shifts.append(g)
for i in range(t):
h = x ** i * f ** m
shifts.append(h)
L, monomials = small_roots.create_lattice(pr, shifts, [X], order=None)
L = small_roots.reduce_lattice(L)
polynomials = small_roots.reconstruct_polynomials(L, f, N ** m, monomials, [X])
for roots in small_roots.find_roots(pr, polynomials):
yield roots[x],