-
Notifications
You must be signed in to change notification settings - Fork 128
/
jochemsz_may_modular.py
141 lines (112 loc) · 3.98 KB
/
jochemsz_may_modular.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import logging
from abc import ABCMeta
from abc import abstractmethod
from math import gcd
from sage.all import ZZ
from shared import small_roots
class Strategy(metaclass=ABCMeta):
@abstractmethod
def generate_M(self, f, l, m):
"""
Generates the M dict.
:param f: the polynomial
:param l: the leading monomial
:param m: the amount of normal shifts to use
:return: the M dict
"""
pass
class BasicStrategy(Strategy):
def generate_M(self, f, l, m):
M = {}
fm_monomials = (f ** m).monomials()
for k in range(m + 1):
M[k] = set()
fmk_monomials = (f ** (m - k)).monomials()
for monomial in fm_monomials:
if monomial // (l ** k) in fmk_monomials:
M[k].add(monomial)
M[m + 1] = []
return M
class ExtendedStrategy(Strategy):
def __init__(self, t):
self.t = t
def generate_M(self, f, l, m):
x = f.parent().gens()
assert len(x) == len(self.t)
M = {}
fm_monomials = (f ** m).monomials()
for k in range(m + 1):
M[k] = set()
fmk_monomials = (f ** (m - k)).monomials()
for monomial in fm_monomials:
if monomial // (l ** k) in fmk_monomials:
for xi, ti in zip(x, self.t):
for j in range(ti + 1):
M[k].add(monomial * xi ** j)
M[m + 1] = []
return M
class BonehDurfeeStrategy(Strategy):
def __init__(self, t):
self.t = t
def generate_M(self, f, l, m):
x1, x2 = f.parent().gens()
M = {}
for k in range(m + 1):
M[k] = set()
for i1 in range(k, m + 1):
for i2 in range(k, i1 + self.t + 1):
M[k].add(x1 ** i1 * x2 ** i2)
M[m + 1] = []
return M
class BlomerMayStrategy(Strategy):
def __init__(self, t):
self.t = t
def generate_M(self, f, l, m):
x1, x2, x3 = f.parent().gens()
M = {}
for k in range(m + 1):
M[k] = set()
for i1 in range(k, m + 1):
for i2 in range(m - i1 + 1):
for i3 in range(i2 + self.t - 1):
M[k].add(x1 ** i1 * x2 ** i2 * x3 ** i3)
M[m + 1] = []
return M
def modular_multivariate(f, N, m, X, strategy, roots_method="groebner"):
"""
Computes small integer roots of a multivariate polynomial.
More information: Jochemsz E., May A., "A Strategy for Finding Roots of Multivariate Polynomials with New Applications in Attacking RSA Variants" (Section 2.1)
:param f: the polynomial
:param N: the modulus
:param m: the parameter m
:param X: a list of approximate bounds on the roots for each variable
:param strategy: the strategy to use (Appendix A)
:param roots_method: the method to use to find roots (default: "groebner")
:return: a generator generating small roots (tuples) of the polynomial
"""
f = f.change_ring(ZZ)
pr = f.parent()
x = pr.gens()
assert len(x) > 1
# Sage lm method depends on the term ordering
l = 1
for monomial in f.monomials():
if monomial % l == 0:
l = monomial
al = int(f.coefficient(l))
assert gcd(al, N) == 1
f_ = (pow(al, -1, N) * f % N).change_ring(ZZ)
logging.debug("Generating shifts...")
M = strategy.generate_M(f, l, m)
shifts = []
monomials = set()
for k in range(m + 1):
for monomial in M[k]:
if monomial not in M[k + 1]:
shifts.append(monomial // (l ** k) * f_ ** k * N ** (m - k))
monomials.add(monomial)
L, monomials = small_roots.create_lattice(pr, shifts, X)
L = small_roots.reduce_lattice(L)
polynomials = small_roots.reconstruct_polynomials(L, f, N ** m, monomials, X)
for roots in small_roots.find_roots(pr, polynomials, method=roots_method):
yield tuple(roots[xi] for xi in x)