forked from andabi/music-source-separation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
131 lines (103 loc) · 5.18 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# -*- coding: utf-8 -*-
# !/usr/bin/env python
'''
By Dabi Ahn. [email protected].
https://www.github.com/andabi
'''
import os
import shutil
import numpy as np
import tensorflow as tf
from config import EvalConfig, ModelConfig
from data import Data
from mir_eval.separation import bss_eval_sources
from model import Model
from preprocess import to_spectrogram, get_magnitude, get_phase, to_wav_mag_only, soft_time_freq_mask, to_wav, write_wav
def eval():
# Model
model = Model()
global_step = tf.Variable(0, dtype=tf.int32, trainable=False, name='global_step')
with tf.Session(config=EvalConfig.session_conf) as sess:
# Initialized, Load state
sess.run(tf.global_variables_initializer())
model.load_state(sess, EvalConfig.CKPT_PATH)
writer = tf.summary.FileWriter(EvalConfig.GRAPH_PATH, sess.graph)
data = Data(EvalConfig.DATA_PATH)
mixed_wav, src1_wav, src2_wav, wavfiles = data.next_wavs(EvalConfig.SECONDS, EvalConfig.NUM_EVAL)
mixed_spec = to_spectrogram(mixed_wav)
mixed_mag = get_magnitude(mixed_spec)
mixed_batch, padded_mixed_mag = model.spec_to_batch(mixed_mag)
mixed_phase = get_phase(mixed_spec)
assert (np.all(np.equal(model.batch_to_spec(mixed_batch, EvalConfig.NUM_EVAL), padded_mixed_mag)))
(pred_src1_mag, pred_src2_mag) = sess.run(model(), feed_dict={model.x_mixed: mixed_batch})
seq_len = mixed_phase.shape[-1]
pred_src1_mag = model.batch_to_spec(pred_src1_mag, EvalConfig.NUM_EVAL)[:, :, :seq_len]
pred_src2_mag = model.batch_to_spec(pred_src2_mag, EvalConfig.NUM_EVAL)[:, :, :seq_len]
# Time-frequency masking
mask_src1 = soft_time_freq_mask(pred_src1_mag, pred_src2_mag)
# mask_src1 = hard_time_freq_mask(pred_src1_mag, pred_src2_mag)
mask_src2 = 1. - mask_src1
pred_src1_mag = mixed_mag * mask_src1
pred_src2_mag = mixed_mag * mask_src2
# (magnitude, phase) -> spectrogram -> wav
if EvalConfig.GRIFFIN_LIM:
pred_src1_wav = to_wav_mag_only(pred_src1_mag, init_phase=mixed_phase, num_iters=EvalConfig.GRIFFIN_LIM_ITER)
pred_src2_wav = to_wav_mag_only(pred_src2_mag, init_phase=mixed_phase, num_iters=EvalConfig.GRIFFIN_LIM_ITER)
else:
pred_src1_wav = to_wav(pred_src1_mag, mixed_phase)
pred_src2_wav = to_wav(pred_src2_mag, mixed_phase)
# Write the result
tf.summary.audio('GT_mixed', mixed_wav, ModelConfig.SR, max_outputs=EvalConfig.NUM_EVAL)
tf.summary.audio('Pred_music', pred_src1_wav, ModelConfig.SR, max_outputs=EvalConfig.NUM_EVAL)
tf.summary.audio('Pred_vocal', pred_src2_wav, ModelConfig.SR, max_outputs=EvalConfig.NUM_EVAL)
if EvalConfig.EVAL_METRIC:
# Compute BSS metrics
gnsdr, gsir, gsar = bss_eval_global(mixed_wav, src1_wav, src2_wav, pred_src1_wav, pred_src2_wav)
# Write the score of BSS metrics
tf.summary.scalar('GNSDR_music', gnsdr[0])
tf.summary.scalar('GSIR_music', gsir[0])
tf.summary.scalar('GSAR_music', gsar[0])
tf.summary.scalar('GNSDR_vocal', gnsdr[1])
tf.summary.scalar('GSIR_vocal', gsir[1])
tf.summary.scalar('GSAR_vocal', gsar[1])
if EvalConfig.WRITE_RESULT:
# Write the result
for i in range(len(wavfiles)):
name = wavfiles[i].replace('/', '-').replace('.wav', '')
write_wav(mixed_wav[i], '{}/{}-{}'.format(EvalConfig.RESULT_PATH, name, 'original'))
write_wav(pred_src1_wav[i], '{}/{}-{}'.format(EvalConfig.RESULT_PATH, name, 'music'))
write_wav(pred_src2_wav[i], '{}/{}-{}'.format(EvalConfig.RESULT_PATH, name, 'voice'))
writer.add_summary(sess.run(tf.summary.merge_all()), global_step=global_step.eval())
writer.close()
def bss_eval_global(mixed_wav, src1_wav, src2_wav, pred_src1_wav, pred_src2_wav):
len_cropped = pred_src1_wav.shape[-1]
src1_wav = src1_wav[:, :len_cropped]
src2_wav = src2_wav[:, :len_cropped]
mixed_wav = mixed_wav[:, :len_cropped]
gnsdr = gsir = gsar = np.zeros(2)
total_len = 0
for i in range(EvalConfig.NUM_EVAL):
sdr, sir, sar, _ = bss_eval_sources(np.array([src1_wav[i], src2_wav[i]]),
np.array([pred_src1_wav[i], pred_src2_wav[i]]), False)
sdr_mixed, _, _, _ = bss_eval_sources(np.array([src1_wav[i], src2_wav[i]]),
np.array([mixed_wav[i], mixed_wav[i]]), False)
nsdr = sdr - sdr_mixed
gnsdr += len_cropped * nsdr
gsir += len_cropped * sir
gsar += len_cropped * sar
total_len += len_cropped
gnsdr = gnsdr / total_len
gsir = gsir / total_len
gsar = gsar / total_len
return gnsdr, gsir, gsar
def setup_path():
if EvalConfig.RE_EVAL:
if os.path.exists(EvalConfig.GRAPH_PATH):
shutil.rmtree(EvalConfig.GRAPH_PATH)
if os.path.exists(EvalConfig.RESULT_PATH):
shutil.rmtree(EvalConfig.RESULT_PATH)
if not os.path.exists(EvalConfig.RESULT_PATH):
os.makedirs(EvalConfig.RESULT_PATH)
if __name__ == '__main__':
setup_path()
eval()