forked from gabraham/flashpca
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.cpp
323 lines (295 loc) · 8.19 KB
/
util.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Copyright (C) 2014-2016 Gad Abraham
* All rights reserved.
*/
#include "util.h"
using namespace Eigen;
bool show_timestamp;
// Standardise matrix column-wise to zero mean and unit variance.
// *Standardises in place*
// If a column is all zeros, it will remain zero.
// Returns p by 2 matrix [mean, sd]
//
// Imputes missing values (nan) to the mean, where the mean was computed over
// all non-missing values
MatrixXd standardise(MatrixXd& X, int method, bool verbose)
{
#ifndef RENV
std::cout.setf(std::ios_base::unitbuf);
#endif
unsigned int n = X.rows(), p = X.cols();
VectorXd mean = MatrixXd::Zero(X.cols(), 1);
VectorXd sd = MatrixXd::Ones(X.cols(), 1);
// Just check for missing values and impute to mean
if(method == STANDARDISE_NONE || method == STANDARDISE_CENTER)
{
for(unsigned int j = 0 ; j < p ; j++)
{
mean(j) = 0;
unsigned int nj = 0;
for(unsigned int i = 0 ; i < n ; i++)
{
double xij = X(i, j);
if(!std::isnan(xij))
{
mean(j) += xij;
nj++;
}
}
mean(j) /= (double)nj;
if(method == STANDARDISE_NONE)
{
for(unsigned int i = 0 ; i < n ; i++)
if(std::isnan(X(i, j)))
X(i, j) = mean(j);
}
else
{
for(unsigned int i = 0 ; i < n ; i++)
{
if(std::isnan(X(i, j)))
X(i, j) = 0;
else
X(i, j) = X(i, j) - mean(j);
}
}
}
}
else if(method == STANDARDISE_SD)
{
verbose && STDOUT << timestamp() << "standardising matrix (SD)"
<< " p: " << p << std::endl;
for(unsigned int j = 0 ; j < p ; j++)
{
double sum = 0;
double sum_sqr = 0;
unsigned int nj = 0;
// https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance,
// shifted_data_variance algorithm
double K = 1; // arbitrary
for(unsigned int i = 0 ; i < n ; i++)
{
double xij = X(i, j);
if(!std::isnan(xij))
{
sum += xij - K;
sum_sqr += (xij - K) * (xij - K);
nj++;
}
}
double varj = (sum_sqr - (sum * sum) / nj) / (nj - 1);
mean(j) = (sum + K * nj) / nj;
sd(j) = std::sqrt(varj);
// Note: using the stdev estimated on the subset of non-missing
// observations will make the final stdev of X(_, j) not b
// exactly 1.
for(unsigned int i = 0 ; i < n ; i++)
{
if(std::isnan(X(i, j)))
X(i, j) = 0;
else if(sd(j) > VAR_TOL)
X(i, j) = (X(i, j) - mean(j)) / sd(j);
else
X(i, j) = mean(j);
}
}
}
// Same as Price 2006 eqn 3
else if(method == STANDARDISE_BINOM || method == STANDARDISE_BINOM2)
{
double mult = method == STANDARDISE_BINOM ? 1 : 2;
verbose && STDOUT << timestamp() << "standardising matrix (BINOM/BINOM2)"
<< " p: " << p << std::endl;
for(unsigned int j = 0 ; j < p ; j++)
{
double sum = 0;
unsigned int nj = 0;
for(unsigned int i = 0 ; i < n ; i++)
{
double xij = X(i, j);
if(!std::isnan(xij))
{
sum += xij;
nj++;
}
}
mean(j) = sum / nj;
double r = mean(j) / 2.0;
sd(j) = std::sqrt(mult * r * (1.0 - r));
// Note: using the stdev estimated on the subset of non-missing
// observations will make the final stdev of X(_, j) not b
// exactly 1.
for(unsigned int i = 0 ; i < n ; i++)
{
if(std::isnan(X(i, j)))
X(i, j) = 0;
else if(sd(j) > VAR_TOL)
X(i, j) = (X(i, j) - mean(j)) / sd(j);
else
X(i, j) = mean(j);
}
}
}
//else if(method == STANDARDISE_CENTER)
//{
// for(unsigned int j = 0 ; j < p ; j++)
// {
// double sum = 0;
// double sum_sqr = 0;
// unsigned int nj = 0;
// double K = 0;
// for(unsigned int i = 0 ; i < n ; i++)
// {
// double xij = X(i, j);
// if(!std::isnan(xij))
// {
// sum += xij - K;
// sum_sqr += (xij - K) * (xij - K);
// nj++;
// }
// }
// double varj = (sum_sqr - (sum * sum) / nj) / (nj - 1);
// mean(j) = (sum + K * nj) / nj;
// sd(j) = std::sqrt(varj);
// // Note: using the stdev estimated on the subset of non-missing
// // observations will make the final stdev of X(_, j) not b
// // exactly 1.
// for(unsigned int i = 0 ; i < n ; i++)
// {
// if(std::isnan(X(i, j)))
// X(i, j) = 0;
// else
// X(i, j) = (X(i, j) - mean(j)) / sd(j);
// }
// }
//}
else
throw std::runtime_error(std::string("unknown standardization method"));
MatrixXd P = MatrixXd::Zero(X.cols(), 2); // [mean, sd]
P.col(0) = mean;
P.col(1) = sd;
return P;
}
// Expects a p times N matrix X, standardised in-place
MatrixXd standardise_transpose(MatrixXd& X, int method, bool verbose)
{
#ifndef RENV
std::cout.setf(std::ios_base::unitbuf);
#endif
unsigned int n = X.cols(), p = X.rows();
VectorXd mean = MatrixXd::Zero(p, 1);
VectorXd sd = MatrixXd::Ones(p, 1);
if(method == STANDARDISE_SD)
{
verbose && STDOUT << timestamp()
<< " standardising transposed matrix (SD)"
<< " p: " << p << std::endl;
for(unsigned int j = 0 ; j < p ; j++)
{
mean(j) = X.row(j).sum() / n;
sd(j) = std::sqrt((X.row(j).array() - mean(j)).square().sum() / (n - 1));
if(sd(j) > VAR_TOL)
X.row(j) = (X.row(j).array() - mean(j)) / sd(j);
}
}
// Same as Price 2006 eqn 3
else if(method == STANDARDISE_BINOM)
{
verbose && STDOUT << timestamp()
<< " standardising transposed matrix (BINOM)"
<< " p: " << p << std::endl;
double r;
for(unsigned int j = 0 ; j < p ; j++)
{
mean(j) = X.row(j).sum() / n;
r = mean(j) / 2.0;
sd(j) = sqrt(r * (1 - r));
if(sd(j) > VAR_TOL)
X.row(j) = (X.row(j).array() - mean(j)) / sd(j);
}
}
else if(method == STANDARDISE_BINOM2)
{
verbose && STDOUT << timestamp()
<< " standardising transposed matrix (BINOM2)"
<< " p: " << p << std::endl;
double r;
for(unsigned int j = 0 ; j < p ; j++)
{
mean(j) = X.row(j).sum() / n;
r = mean(j) / 2.0;
sd(j) = sqrt(2 * r * (1 - r)); // Note the factor of 2
if(sd(j) > VAR_TOL)
X.row(j) = (X.row(j).array() - mean(j)) / sd(j);
}
}
else if(method == STANDARDISE_CENTER)
{
for(unsigned int j = 0 ; j < p ; j++)
{
mean(j) = X.row(j).sum() / n;
X.row(j) = X.row(j).array() - mean(j);
}
}
else
throw std::runtime_error(std::string("unknown standardization method"));
MatrixXd P = MatrixXd::Zero(p, 2); // [mean, sd]
P.col(0) = mean;
P.col(1) = sd;
return P;
}
std::string timestamp()
{
if(show_timestamp)
{
time_t t = time(NULL);
char *s = asctime(localtime(&t));
s[strlen(s) - 1] = '\0';
std::string str(s);
str = std::string("[") + str + std::string("] ");
return str;
}
else
return std::string("");
}
/*
* Based on http://ndevilla.free.fr/median/median/src/torben.c
* Algorithm by Torben Mogensen, implementation by N. Devillard.
* This code in public domain.
*/
double median_torben(double m[], int n)
{
int i, less, greater, equal;
double min, max, guess, maxltguess, mingtguess;
min = max = m[0] ;
for (i=1 ; i<n ; i++) {
if (m[i]<min) min=m[i];
if (m[i]>max) max=m[i];
}
while (1) {
guess = (min+max)/2;
less = 0; greater = 0; equal = 0;
maxltguess = min ;
mingtguess = max ;
for (i=0; i<n; i++) {
if (m[i]<guess) {
less++;
if (m[i]>maxltguess) maxltguess = m[i] ;
} else if (m[i]>guess) {
greater++;
if (m[i]<mingtguess) mingtguess = m[i] ;
} else equal++;
}
if (less <= (n+1)/2 && greater <= (n+1)/2) break ;
else if (less>greater) max = maxltguess ;
else min = mingtguess;
}
if (less >= (n+1)/2) return maxltguess;
else if (less+equal >= (n+1)/2) return guess;
else return mingtguess;
}