-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_tfvaegan_saving_unseen.py
514 lines (443 loc) · 21.1 KB
/
train_tfvaegan_saving_unseen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
from __future__ import print_function
import torch
import torch.autograd as autograd
import torch.optim as optim
import torch.backends.cudnn as cudnn
from torch.autograd import Variable
import numpy as np
import random
import os
import scipy.io as sio
# load files
import model
import util
import classifier
import classifier_entropy
from config import opt
if opt.manualSeed is None:
opt.manualSeed = random.randint(1, 10000)
print("Random Seed: ", opt.manualSeed)
np.random.seed(opt.manualSeed)
random.seed(opt.manualSeed)
torch.manual_seed(opt.manualSeed)
if opt.cuda:
torch.cuda.manual_seed_all(opt.manualSeed)
cudnn.benchmark = True
if torch.cuda.is_available() and not opt.cuda:
print("WARNING: You have a CUDA device, so you should run with --cuda")
# load data
data = util.DATA_LOADER(opt)
print("Training samples: ", data.ntrain)
print("Dataset: ", opt.dataset)
if opt.gzsl_od:
print('Performing OD-based GZSL experiments!')
elif opt.gzsl:
print('Performing Simple GZSL experiments!')
else:
print('Performing ZSL experiments!')
# Init modules: Encoder, Generator, Discriminator
netE = model.Encoder(opt)
netG = model.Generator(opt)
netD = model.Discriminator_D1(opt)
# Init models: Feedback module, auxillary module
netF = model.Feedback(opt)
netDec = model.AttDec(opt, opt.attSize)
print(netE)
print(netG)
print(netD)
print(netF)
print(netDec)
# Init Tensors
input_res = torch.FloatTensor(opt.batch_size, opt.resSize)
input_att = torch.FloatTensor(opt.batch_size, opt.attSize)
noise = torch.FloatTensor(opt.batch_size, opt.nz)
# input_bce_att = torch.FloatTensor(opt.batch_size, opt.attSize)
one = torch.tensor(1, dtype=torch.float)
# one = torch.FloatTensor([1])
mone = one * -1
# Cuda
if opt.cuda:
netG.cuda()
netD.cuda()
netE.cuda()
netDec.cuda()
netF.cuda()
input_res = input_res.cuda()
noise, input_att = noise.cuda(), input_att.cuda()
# input_bce_att = input_bce_att.cuda()
one = one.cuda()
mone = mone.cuda()
def loss_fn(recon_x, x, mean, log_var):
# vae loss L_bce + L_kl
BCE = torch.nn.functional.binary_cross_entropy(recon_x + 1e-12, x.detach(), size_average=False)
BCE = BCE.sum() / x.size(0)
KLD = -0.5 * torch.sum(1 + log_var - mean.pow(2) - log_var.exp()) / x.size(0)
return BCE + KLD
def WeightedL1(pred, gt, bce=False, gt_bce=None):
# semantic embedding cycle-consistency loss
if bce:
BCE = torch.nn.functional.binary_cross_entropy(pred + 1e-12, gt_bce.detach(), size_average=False)
return BCE.sum() / pred.size(0)
wt = (pred - gt).pow(2)
wt /= wt.sum(1).sqrt().unsqueeze(1).expand(wt.size(0), wt.size(1))
loss = wt * (pred - gt).abs()
return loss.sum() / loss.size(0)
def feedback_module(gen_out, att, netG, netDec, netF):
syn_fake = netG(gen_out, c=att)
recons = netDec(syn_fake)
recons_hidden_feat = netDec.getLayersOutDet()
feedback_out = netF(recons_hidden_feat)
syn_fake = netG(gen_out, a1=opt.a1, c=att, feedback_layers=feedback_out)
return syn_fake
def sample():
# data loader
# batch_feature, batch_att, batch_bce_att = data.next_seen_batch(opt.batch_size)
batch_feature, batch_att = data.next_seen_batch(opt.batch_size)
input_res.copy_(batch_feature)
input_att.copy_(batch_att)
# input_bce_att.copy_(batch_bce_att, batch_att)
def generate_syn_feature(netG, classes, attribute, num, netF=None, netDec=None):
# unseen feature synthesis
nclass = classes.size(0)
syn_feature = torch.FloatTensor(nclass * num, opt.resSize)
syn_label = torch.LongTensor(nclass * num)
syn_att = torch.FloatTensor(num, opt.attSize)
syn_noise = torch.FloatTensor(num, opt.nz)
if opt.cuda:
syn_att = syn_att.cuda()
syn_noise = syn_noise.cuda()
for i in range(nclass):
iclass = classes[i]
iclass_att = attribute[iclass]
# replicate the attributes
syn_att.copy_(iclass_att.repeat(num, 1))
syn_noise.normal_(0, 1)
with torch.no_grad():
syn_noisev = Variable(syn_noise)
syn_attv = Variable(syn_att)
output = feedback_module(gen_out=syn_noisev, att=syn_attv, netG=netG, netDec=netDec, netF=netF)
syn_feature.narrow(0, i * num, num).copy_(output.data.cpu())
syn_label.narrow(0, i * num, num).fill_(iclass)
return syn_feature, syn_label
# setup optimizer
optimizerD = optim.Adam(netD.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999))
optimizerE = optim.Adam(netE.parameters(), lr=opt.lr)
optimizerG = optim.Adam(netG.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999))
optimizerF = optim.Adam(netF.parameters(), lr=opt.feed_lr, betas=(opt.beta1, 0.999))
optimizerDec = optim.Adam(netDec.parameters(), lr=opt.dec_lr, betas=(opt.beta1, 0.999))
def calc_gradient_penalty(netD, real_data, fake_data, input_att):
alpha = torch.rand(opt.batch_size, 1)
alpha = alpha.expand(real_data.size())
if opt.cuda:
alpha = alpha.cuda()
interpolates = alpha * real_data + ((1 - alpha) * fake_data)
if opt.cuda:
interpolates = interpolates.cuda()
interpolates = Variable(interpolates, requires_grad=True)
disc_interpolates = netD(interpolates, Variable(input_att))
ones = torch.ones(disc_interpolates.size())
if opt.cuda:
ones = ones.cuda()
gradients = autograd.grad(outputs=disc_interpolates, inputs=interpolates,
grad_outputs=ones,
create_graph=True, retain_graph=True, only_inputs=True)[0]
gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean() * opt.lambda1
return gradient_penalty
# TODO: Recording best_acc, best_acc_per_class, best_cm
if opt.gzsl_od:
best_gzsl_od_acc = 0
elif opt.gzsl:
best_gzsl_simple_acc = 0
else:
best_zsl_acc = 0
best_zsl_acc_per_class = []
best_zsl_cm = []
#saved_generated_feats = np.empty((0, opt.resSize))
#saved_generated_labels = np.empty((0, 1))
dict_saved_generated_label_feat = {}
# Training loop
for epoch in range(0, opt.nepoch):
print("Start VAEGAN Training at epoch: ", epoch)
# feedback training loop
for loop in range(0, opt.feedback_loop):
for i in range(0, data.ntrain, opt.batch_size):
# TODO: Discriminator training
# unfreeze discrimator
for p in netD.parameters():
p.requires_grad = True
# unfreeze deocder
for p in netDec.parameters():
p.requires_grad = True
# TODO: Train D1 and Decoder
gp_sum = 0
for iter_d in range(opt.critic_iter):
sample()
netD.zero_grad()
input_resv = Variable(input_res)
input_attv = Variable(input_att)
# TODO: Training the auxillary module
netDec.zero_grad()
recons = netDec(input_resv)
R_cost = opt.recons_weight * WeightedL1(recons, input_attv)
# R_cost = opt.recons_weight*WeightedL1(recons, input_attv, bce=opt.bce_att, gt_bce=Variable(input_bce_att))
R_cost.backward()
optimizerDec.step()
criticD_real = netD(input_resv, input_attv)
criticD_real = opt.gammaD * criticD_real.mean()
criticD_real.backward(mone)
if opt.encoded_noise:
means, log_var = netE(input_resv, input_attv)
std = torch.exp(0.5 * log_var)
eps = torch.randn([opt.batch_size, opt.latent_size])
if opt.cuda:
eps = eps.cuda()
eps = Variable(eps)
latent_code = eps * std + means
else:
noise.normal_(0, 1)
latent_code = Variable(noise)
# TODO: feedback loop
if loop == 1:
fake = feedback_module(gen_out=latent_code, att=input_attv, netG=netG, netDec=netDec, netF=netF)
else:
fake = netG(latent_code, c=input_attv)
criticD_fake = netD(fake.detach(), input_attv)
criticD_fake = opt.gammaD * criticD_fake.mean()
criticD_fake.backward(one)
# gradient penalty
gradient_penalty = opt.gammaD * calc_gradient_penalty(netD, input_res, fake.data, input_att)
gp_sum += gradient_penalty.data
gradient_penalty.backward()
Wasserstein_D = criticD_real - criticD_fake
# add Y here
# And add vae reconstruction loss
D_cost = criticD_fake - criticD_real + gradient_penalty
optimizerD.step()
# Adaptive lambda
gp_sum /= (opt.gammaD * opt.lambda1 * opt.critic_iter)
if (gp_sum > 1.05).sum() > 0:
opt.lambda1 *= 1.1
elif (gp_sum < 1.001).sum() > 0:
opt.lambda1 /= 1.1
# TODO:netG training
# Train netG and Decoder
for p in netD.parameters():
p.requires_grad = False
if opt.recons_weight > 0 and opt.freeze_dec:
for p in netDec.parameters():
p.requires_grad = False
netE.zero_grad()
netG.zero_grad()
netF.zero_grad()
input_resv = Variable(input_res)
input_attv = Variable(input_att)
# This is outside the opt.encoded_noise condition because of the vae loss
means, log_var = netE(input_resv, input_attv)
std = torch.exp(0.5 * log_var)
eps = torch.randn([opt.batch_size, opt.latent_size])
if opt.cuda:
eps = eps.cuda()
eps = Variable(eps)
latent_code = eps * std + means
if loop == 1:
recon_x = feedback_module(gen_out=latent_code, att=input_attv, netG=netG, netDec=netDec, netF=netF)
else:
recon_x = netG(latent_code, c=input_attv)
vae_loss_seen = loss_fn(recon_x, input_resv, means, log_var)
errG = vae_loss_seen
if opt.encoded_noise:
criticG_fake = netD(recon_x, input_attv).mean()
fake = recon_x
else:
noise.normal_(0, 1)
latent_code_noise = Variable(noise)
if loop == 1:
fake = feedback_module(gen_out=latent_code_noise, att=input_attv, netG=netG, netDec=netDec,
netF=netF)
else:
fake = netG(latent_code_noise, c=input_attv)
criticG_fake = netD(fake, input_attv).mean()
G_cost = -criticG_fake
# Add vae loss and generator loss
errG += opt.gammaG * G_cost
netDec.zero_grad()
recons_fake = netDec(fake)
# R_cost = WeightedL1(recons_fake, input_attv, bce=opt.bce_att, gt_bce=Variable(input_bce_att))
R_cost = WeightedL1(recons_fake, input_attv)
# Add reconstruction loss
errG += opt.recons_weight * R_cost
errG.backward()
optimizerE.step()
optimizerG.step()
if loop == 1:
optimizerF.step()
# not train decoder at feedback time
if opt.recons_weight > 0 and not opt.freeze_dec:
optimizerDec.step()
# Print losses
print('[%d/%d] Loss_D: %.4f Loss_G: %.4f, Wasserstein_dist:%.4f, vae_loss_seen:%.4f \n'
% (epoch, opt.nepoch, D_cost.data, G_cost.data, Wasserstein_D.data, vae_loss_seen.data), end=" ")
# Evaluation
netG.eval()
netDec.eval()
netF.eval()
syn_feature, syn_label = generate_syn_feature(netG, data.unseenclasses, data.attribute, opt.syn_num,
netF=netF, netDec=netDec)
# TODO: Saving generated visual features for all unseen classes per epoch
# size: 8192 * number of visual features & unseen classes * epoch
# Example(HMDB51): 8192 * 800 * 25 * 100
# syn_feature: torch.Size([20000, 8192])
# syn_label: torch.Size([20000])
#saved_generated_labels = np.hstack((saved_generated_labels, syn_label.resize(-1, 1)))
#saved_generated_feats = np.hstack((saved_generated_feats, syn_feature))
saved_generated_label_feat = np.hstack((syn_label.resize(syn_label.size(0), 1), syn_feature))
epoch_str = 'epoch_' + str(epoch)
dict_saved_generated_label_feat[epoch_str] = saved_generated_label_feat
# save generated unseen visual feat.
saving_data_papth = '/content/drive/MyDrive/colab_data/KG_GCN_GAN'
sio.savemat(saving_data_papth + '/Unseen_Visual_Feat_' + opt.dataset + '_' +
opt.class_embedding + '_' +
'split_' + str(opt.split) + '.mat',
dict_saved_generated_label_feat)
# TODO: Generalized zero-shot learning
# TODO: Read generated unseen visual features from saved file
if opt.gzsl_od:
# OD based GZSL
print("Performing Out-of-Distribution GZSL")
seen_class = data.seenclasses.size(0)
clsu = classifier.CLASSIFIER(syn_feature, util.map_label(syn_label, data.unseenclasses),
data, data.unseenclasses.size(0), opt.cuda,
_nepoch=30, generalized=True, _batch_size=128,
netDec=netDec, dec_size=opt.attSize, dec_hidden_size=4096)
# _batch_size=opt.syn_num
clss = classifier.CLASSIFIER(data.train_feature, util.map_label(data.train_label, data.seenclasses),
data, data.seenclasses.size(0), opt.cuda,
_nepoch=30, generalized=True, _batch_size=128,
netDec=netDec, dec_size=opt.attSize, dec_hidden_size=4096)
clsg = classifier_entropy.CLASSIFIER(data.train_feature, util.map_label(data.train_label, data.seenclasses),
data, seen_class, syn_feature, syn_label,
opt.cuda, clss, clsu, _nepoch=30, _batch_size=128,
netDec=netDec, dec_size=opt.attSize, dec_hidden_size=4096)
if best_gzsl_od_acc < clsg.H:
best_acc_seen, best_acc_unseen, best_gzsl_od_acc = clsg.acc_seen, clsg.acc_unseen, clsg.H
best_acc_per_seen, best_acc_per_unseen = clsg.acc_per_seen, clsg.acc_per_unseen
best_cm_seen, best_cm_unseen = clsg.cm_seen, clsg.cm_unseen
best_epoch = epoch
print('GZSL-OD: Acc seen=%.4f, Acc unseen=%.4f, h=%.4f \n' % (clsg.acc_seen, clsg.acc_unseen, clsg.H))
print('GZSL-OD: Acc per seen classes \n', clsg.acc_per_seen)
print('GZSL-OD: Acc per unseen classes \n', clsg.acc_per_unseen)
#print('GZSL-OD: seen confusion matrix: \n', clsg.cm_seen)
#print('GZSL-OD: unseen confusion matrix: \n', clsg.cm_unseen)
elif opt.gzsl:
# TODO: simple Generalized zero-shot learning
print("Performing simple GZSL")
train_X = torch.cat((data.train_feature, syn_feature), 0)
train_Y = torch.cat((data.train_label, syn_label), 0)
nclass = opt.nclass_all
clsg = classifier.CLASSIFIER(train_X, train_Y, data, nclass,
opt.cuda, _nepoch=50,
_batch_size=128, generalized=True,
netDec=netDec, dec_size=opt.attSize, dec_hidden_size=4096)
if best_gzsl_simple_acc < clsg.H:
best_acc_seen, best_acc_unseen, best_gzsl_simple_acc = clsg.acc_seen, clsg.acc_unseen, clsg.H
best_acc_per_seen, best_acc_per_unseen = clsg.acc_per_seen, clsg.acc_per_unseen
best_epoch = epoch
# best_cm_seen, best_cm_unseen = clsg.cm_seen, clsg.cm_unseen
print('Simple GZSL: Acc seen=%.4f, Acc unseen=%.4f, h=%.4f \n' % (clsg.acc_seen, clsg.acc_unseen, clsg.H))
print('Simple GZSL: Acc per seen classes \n', clsg.acc_per_seen)
print('Simple GZSL: Acc per unseen classes \n', clsg.acc_per_unseen)
#print('Simple GZSL: seen confusion matrix: \n', clsg.cm_seen)
#print('Simple GZSL: unseen confusion matrix: \n', clsg.cm_unseen)
else:
# TODO: Zero-shot learning
print("Performing ZSL")
# Train ZSL classifier
zsl_cls = classifier.CLASSIFIER(syn_feature, util.map_label(syn_label, data.unseenclasses),
data, data.unseenclasses.size(0),
opt.cuda, opt.classifier_lr, 0.5, 50, opt.syn_num,
generalized=False, netDec=netDec,
dec_size=opt.attSize, dec_hidden_size=4096)
acc = zsl_cls.acc
acc_per_class = zsl_cls.acc_per_class
cm = zsl_cls.cm
if best_zsl_acc < acc:
best_zsl_acc = acc
best_zsl_acc_per_class = acc_per_class
best_zsl_cm = cm
best_epoch = epoch
print('ZSL unseen accuracy=%.4f at Epoch %d\n' % (acc, epoch))
#print('ZSL unseen accuracy per class\n', acc_per_class)
#print('ZSL confusion matrix\n', cm)
# reset modules to training mode
netG.train()
netDec.train()
netF.train()
result_root = '/content/drive/MyDrive/colab_data/KG_GCN_GAN'
# Showing Best results
print('Showing Best Results for Dataset: ', opt.dataset)
# TODO: Save results into local file for ZSL, GZSL, GZSL-OD
if opt.gzsl_od:
with open(os.path.join(result_root, "exp_gzsl_od_results_" +
opt.dataset + "_" +
opt.class_embedding + ".txt"), "a+") as f:
f.write("\n" + "Dataset: " + str(opt.dataset) + "\n")
f.write("Results: OD-based GZSL Experiments" + "\n")
f.write("Split Index: " + str(opt.split) + "\n")
f.write("Visual Embedding: " + str(opt.action_embedding) + "\n")
f.write("Semantic Embedding: " + str(opt.class_embedding) + "\n")
# TODO: recording full confusion matrix
f.write("Best Epoch: " + str(best_epoch) + "\n")
f.write('Best GZSL-OD seen accuracy is ' + str(best_acc_seen) + "\n")
f.write("Best GZSL-OD seen per-class accuracy: " + str(best_acc_per_seen) + "\n")
f.write('Best GZSL-OD unseen accuracy is' + str(best_acc_unseen) + "\n")
f.write("Best GZSL-OD unseen per-class accuracy: " + str(best_acc_per_unseen) + "\n")
f.write('Best GZSL-OD H is ' + str(best_gzsl_od_acc) + "\n")
print('Best GZSL-OD GZSL seen accuracy: ', best_acc_seen)
print('Best GZSL-OD GZSL seen accuracy per class: ', best_acc_per_seen)
print('Best GZSL-OD GZSL unseen accuracy: ', best_acc_unseen)
print('Best GZSL-OD GZSL unseen accuracy per class: ', best_acc_per_unseen)
print('Best GZSL-OD GZSL H: ', best_gzsl_od_acc)
#print('Best GZSL-OD seen CM', best_cm_seen)
#print('Best GZSL-OD unseen CM', best_cm_unseen)best_gzsl_od_acc
elif opt.gzsl:
with open(os.path.join(result_root, "exp_gzsl_results.txt"), "a+") as f:
f.write("\n" + "Dataset: " + str(opt.dataset) + "\n")
f.write("Results: Simple GZSL Experiments" + "\n")
f.write("Split Index: " + str(opt.split) + "\n")
f.write("Visual Embedding: " + str(opt.action_embedding) + "\n")
f.write("Semantic Embedding: " + str(opt.class_embedding) + "\n")
# TODO: recording full confusion matrix
f.write("Best Epoch: " + str(best_epoch) + "\n")
f.write("Best Simple GZSL seen accuracy: " + str(best_acc_seen) + "\n")
f.write("Best Simple GZSL seen per-class accuracy: " + str(best_acc_per_seen) + "\n")
f.write("Best Simple GZSL unseen accuracy: " + str(best_acc_unseen) + "\n")
f.write("Best Simple GZSL unseen per-class accuracy: " + str(best_acc_per_unseen) + "\n")
f.write("Best Simple GZSL H: " + str(best_gzsl_simple_acc) + "\n")
#f.write("Best ZSL unseen confusion matrix: " + str(best_zsl_cm) + "\n")
print('Best Simple GZSL seen accuracy: ', best_acc_seen)
print('Best Simple GZSL seen accuracy per class: ', best_acc_per_seen)
print('Best Simple GZSL unseen accuracy: ', best_acc_unseen)
print('Best Simple GZSL unseen accuracy per class: ', best_acc_per_unseen)
print('Best Simple GZSL H: ', best_gzsl_simple_acc)
#print('Best Simple GZSL seen CM', best_cm_seen)
#print('Best Simple GZSL unseen CM', best_cm_unseen)
else:
# ZSL: best_zsl_acc
# best_zsl_acc_per_class,
# best_zsl_cm
with open(os.path.join(result_root, "exp_zsl_results_" +
opt.dataset + "_" +
opt.class_embedding + ".txt"), "a+") as f:
f.write("\n" + "Dataset: " + str(opt.dataset) + "\n")
f.write("Results: ZSL Experiments" + "\n")
f.write("Split Index: " + str(opt.split) + "\n")
f.write("Visual Embedding: " + str(opt.action_embedding) + "\n")
f.write("Semantic Embedding: " + str(opt.class_embedding) + "\n")
# TODO: recording full confusion matrix
f.write("Best Epoch: " + str(best_epoch) + "\n")
f.write("Best ZSL unseen accuracy: " + str(best_zsl_acc) + "\n")
f.write("Best ZSL unseen per-class accuracy: " + str(best_zsl_acc_per_class) + "\n")
#f.write("Best ZSL unseen confusion matrix: " + str(best_zsl_cm) + "\n")
print('Best ZSL unseen accuracy is', best_zsl_acc)
print('Best ZSL unseen per-class accuracy is', best_zsl_acc_per_class)
#print('Best ZSL unseen confusion matrix is', best_zsl_cm)