-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathtester.py
executable file
·442 lines (372 loc) · 17.8 KB
/
tester.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
import argparse, os, sys, logging, random, bisect, threading, queue, time
from datetime import datetime
import numpy as np
import multiprocessing as mp
# from skimage.measure import compare_ssim
from skimage.metrics import structural_similarity as compare_ssim
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision.transforms import Compose, ToTensor
import utility as util
from option import opt
from model import MultiNetwork
from dataset import DatasetForDASH
import template
import imageio
RESOLUTION = {240: (480, 270), 360: (640, 360), 480: (960, 540), 720: (1920, 1080), 1080: (1920, 1080)}
DUMMY_TRIAL = 3
TEST_TRIAL = 10
PROCESS_NUM = 4
"""Note
Measuring SSIM using sckit.image is quite slow.
Therefore, I implmented tester using multi-processes.
"""
class Quality: pass #class for recording result of analysis
class Result: pass #class for recording result of analysis
#measure psnr, ssim
def measure_quality(input_queue, output_queue):
print(mp.current_process().name)
quality_list = []
print('process_start')
while True:
try:
input = input_queue.get()
if str(input[0]) == 'end':
print('process end')
break
else:
input_np = input[1]
target_np = input[2]
# ssim = compare_ssim(input_np, target_np, gaussian_weights=True, sigma=1.5, use_sample_covariance=False, data_range=1.0, multichannel=True) #deprecated
ssim = compare_ssim(input_np, target_np, gaussian_weights=True, sigma=1.5, data_range=1.0, channel_axis=2)
psnr = util.get_psnr(input_np, target_np, max_value=1.0)
quality = Quality()
quality.idx = input[0]
quality.ssim = ssim
quality.psnr = psnr
quality_list.append(quality)
except (KeyboardInterrupt, SystemExit):
print('exiting...')
break
output_queue.put(quality_list)
def save_img(input_queue):
print(mp.current_process().name)
print('process_start')
while True:
try:
input = input_queue.get()
if str(input[0]) == 'end':
print('process end')
break
else:
lr = input[0]
frame_idx = input[1]
input_np = input[2]
output_np = input[3]
target_np = input[4]
input_np *= 255
output_np *= 255
target_np *= 255
imageio.imwrite('{}/{}_{}_input.png'.format(opt.result_dir, lr, frame_idx), input_np.astype(np.uint8))
imageio.imwrite('{}/{}_{}_output.png'.format(opt.result_dir, lr, frame_idx), output_np.astype(np.uint8))
imageio.imwrite('{}/{}_{}_target.png'.format(opt.result_dir, lr, frame_idx), target_np.astype(np.uint8))
except (KeyboardInterrupt, SystemExit):
print('exiting...')
break
class Tester:
def __init__(self, opt, model, dataset):
self.opt = opt
self.model = model
self.dataset = dataset
self.dataset.setDatasetType('test')
self.device = torch.device("cuda" if opt.use_cuda else "cpu")
#load a model on a target device & Load weights
self.model = self.model.to(self.device)
self.model.load_state_dict(torch.load("{}/epoch_{}.pth".format(self.opt.checkpoint_dir, self.opt.test_num_epoch)))
self.model.eval()
#map resolution to outputNodes
self.node2res = {}
max_node = 0
for res in opt.dash_lr:
self.dataset.setTargetLR(res)
self.model.setTargetScale(self.dataset.getTargetScale())
nodes = self.model.getOutputNodes()
for node in nodes:
if node in self.node2res.keys():
self.node2res[node].append(res)
else:
self.node2res[node] = []
self.node2res[node].append(res)
self.output_nodes = list(self.node2res.keys())
#get psnr, ssim of baseline methods (e.g., bicubic)
def _analyze_baseline(self):
timer = util.timer()
dataloader = DataLoader(dataset=self.dataset, num_workers=self.opt.num_thread, batch_size=1, shuffle=False, pin_memory=True)
result = {}
#iterate over low resolutions
for lr in opt.dash_lr:
#setup (process & thread)
process_list = []
output_queue = mp.Queue()
input_queue = mp.Queue(1)
for _ in range(PROCESS_NUM):
process = mp.Process(target=measure_quality, args=(input_queue, output_queue))
process.start()
process_list.append(process)
#setup (variable)
result[lr] = Result()
result[lr].frameidx = []
result[lr].ssim = []
result[lr].psnr = []
print('start anaylze {}p/baseline quality'.format(lr))
self.dataset.setTargetLR(lr)
self.model.setTargetScale(self.dataset.getTargetScale())
#iterate over test dataset
for iteration, batch in enumerate(dataloader, 1):
assert len(batch[0]) == 1
_, upscaled, target = batch[0], batch[1], batch[2]
upscaled_np, target_np = torch.squeeze(upscaled, 0).permute(1, 2, 0).numpy(), torch.squeeze(target, 0).permute(1, 2, 0).numpy()
upscaled_np= upscaled.data[0].permute(1,2,0).numpy()
input_queue.put((iteration, upscaled_np, target_np))
elapsed_time = timer.toc()
util.print_progress(iteration, len(self.dataset), 'Test Progress ({}p - {}sec):'.format(lr, round(elapsed_time, 2)), 'Complete', 1, 50)
#terminate
for _ in range(len(process_list)):
input_queue.put(('end', ))
#merge results
quality_list = []
for process in process_list:
quality_list.extend(output_queue.get())
for quality in quality_list:
result[lr].frameidx.append(quality.idx)
result[lr].ssim.append(quality.ssim)
result[lr].psnr.append(quality.psnr)
result[lr].frameidx, result[lr].ssim, result[lr].psnr = \
[list(x) for x in zip(*sorted(zip(result[lr].frameidx, result[lr].ssim, result[lr].psnr), key=lambda pair: pair[0]))]
#PSNR, SSIM for original images
result[self.opt.dash_hr] = Result()
result[self.opt.dash_hr].psnr = 100
result[self.opt.dash_hr].ssim = 1
return result
def _generate_sr(self, output_node=None):
with torch.no_grad():
timer = util.timer()
if output_node == None :
output_node = self.output_nodes[-1]
dataloader = DataLoader(dataset=self.dataset, num_workers=6, batch_size=1, shuffle=False, pin_memory=True)
target_res = self.node2res[output_node]
process_list = []
input_queue = mp.Queue()
for _ in range(PROCESS_NUM):
process = mp.Process(target=save_img, args=(input_queue, ))
process.start()
process_list.append(process)
#iterate over target resolutions
for lr in target_res:
self.dataset.setTargetLR(lr)
self.model.setTargetScale(self.dataset.getTargetScale())
for iteration, batch in enumerate(dataloader, 1):
assert len(batch[0]) == 1
#prepare
input, upscaled, target = batch[0], batch[1], batch[2]
input_np, pscaled_np, target_np = torch.squeeze(input, 0).permute(1, 2, 0).numpy(), torch.squeeze(upscaled, 0).permute(1, 2, 0).numpy(), torch.squeeze(target, 0).permute(1, 2, 0).numpy()
input, upscaled, target = input.to(self.device), upscaled.to(self.device), target.to(self.device)
output = self.model(input, output_node)
torch.cuda.synchronize()
output = torch.squeeze(torch.clamp(output, min=0, max=1.), 0).permute(1, 2, 0)
output_np = output.to('cpu').numpy()
'''
imageio.imwrite('{}/{}_{}_output.png'.format(self.opt.result_dir, lr, iteration), output_np.astype(np.uint8))
imageio.imwrite('{}/{}_{}_baseline.png'.format(self.opt.result_dir, lr, iteration), upscaled_np.astype(np.uint8))
imageio.imwrite('{}/{}_{}_target.png'.format(self.opt.result_dir, lr, iteration), target_np.astype(np.uint8))
'''
input_queue.put((lr, iteration, input_np, output_np, target_np))
elapsed_time = timer.toc()
util.print_progress(iteration, len(self.dataset), 'Test Progress ({}p - {}sec):'.format(lr, round(elapsed_time, 2)), 'Complete', 1, 50)
#terminate
for _ in range(len(process_list)):
input_queue.put(('end', ))
#get psnr, ssim of super-resolution
def _analyze_sr(self, output_node):
with torch.no_grad():
timer = util.timer()
dataloader = DataLoader(dataset=self.dataset, num_workers=1, batch_size=1, shuffle=False, pin_memory=True)
result = {}
target_res = self.node2res[output_node]
#iterate over target resolutions
for lr in target_res:
#setup (process & thread)
process_list = []
output_queue = mp.Queue()
input_queue = mp.Queue(1)
for _ in range(PROCESS_NUM):
process = mp.Process(target=measure_quality, args=(input_queue, output_queue))
process.start()
process_list.append(process)
#setup (variable)
result[lr] = Result()
result[lr].frameidx = []
result[lr].ssim = []
result[lr].psnr = []
print('start anaylze {}p/output node:{} quality'.format(lr, output_node))
self.dataset.setTargetLR(lr)
self.model.setTargetScale(self.dataset.getTargetScale())
for iteration, batch in enumerate(dataloader, 1):
assert len(batch[0]) == 1
#prepare
input, upscaled, target = batch[0], batch[1], batch[2]
upscaled_np, target_np = torch.squeeze(upscaled, 0).permute(1, 2, 0).numpy(), torch.squeeze(target, 0).permute(1, 2, 0).numpy()
input, upscaled, target = input.to(self.device), upscaled.to(self.device), target.to(self.device)
output = self.model(input, output_node)
torch.cuda.synchronize()
output = torch.squeeze(torch.clamp(output, min=0, max=1.), 0).permute(1, 2, 0)
output_np = output.to('cpu').numpy()
input_queue.put((iteration, output_np, target_np))
elapsed_time = timer.toc()
util.print_progress(iteration, len(self.dataset), 'Test Progress ({}p - {}sec):'.format(lr, round(elapsed_time, 2)), 'Complete', 1, 50)
#terminate
for _ in range(len(process_list)):
input_queue.put(('end', ))
#merge results
quality_list = []
for process in process_list:
quality_list.extend(output_queue.get())
for quality in quality_list:
result[lr].frameidx.append(quality.idx)
result[lr].ssim.append(quality.ssim)
result[lr].psnr.append(quality.psnr)
result[lr].frameidx, result[lr].ssim, result[lr].psnr = \
[list(x) for x in zip(*sorted(zip(result[lr].frameidx, result[lr].ssim,result[lr].psnr), key=lambda pair: pair[0]))]
#add HR info
result[self.opt.dash_hr] = Result()
result[self.opt.dash_hr].psnr = 100
result[self.opt.dash_hr].ssim = 1
return result
def evaluate_quality(self):
#summary log
log_name = datetime.now().strftime('result_quality_summary_{}.log'.format(opt.test_num_epoch))
summary_logger = util.get_logger(opt.result_dir, log_name)
log = ''
log += 'outputIdx\t'
for lr in opt.dash_lr:
log += 'PSNR(SR, {}p)\t'.format(lr)
log += 'PSNR(bicubic, {}p)\t'.format(lr)
log += '\t'
log += 'SSIM(SR, {}p)\t'.format(lr)
log += 'SSIM(bicubic, {}p)\t'.format(lr)
log += '\t'
summary_logger.info(log)
#detail log (per frame)
detail_logger = {}
for output_node in self.output_nodes:
detaill_logname = datetime.now().strftime('result_quality_detail_{}_{}.log'.format(output_node, opt.test_num_epoch))
detail_logger[output_node] = util.get_logger(opt.result_dir, detaill_logname)
for output_node in self.output_nodes:
log = ''
log += 'FrameIdx\t'
for lr in self.node2res[output_node]:
log += 'PSNR(SR, {}p)\t'.format(lr)
log += 'PSNR(bicubic, {}p)\t'.format(lr)
log += '\t'
log += 'SSIM(SR, {}p)\t'.format(lr)
log += 'SSIM(bicubic, {}p)\t'.format(lr)
log += '\t'
detail_logger[output_node].info(log)
#analyze
baseline_result = self._analyze_baseline()
sr_result = {}
for output_node in self.output_nodes:
sr_result[output_node] = self._analyze_sr(output_node)
#logging
for output_node in self.output_nodes:
#analyze
log = ''
log += '{}\t'.format(output_node)
for lr in opt.dash_lr:
if lr in self.node2res[output_node]:
log += '{}\t'.format(np.mean(sr_result[output_node][lr].psnr))
log += '{}\t'.format(np.mean(baseline_result[lr].psnr))
log += '\t'
log += '{}\t'.format(np.mean(sr_result[output_node][lr].ssim))
log += '{}\t'.format(np.mean(baseline_result[lr].ssim))
log += '\t'
else:
log += '\t'
log += '\t'
log += '\t'
log += '\t'
log += '\t'
log += '\t'
summary_logger.info(log)
for idx in range(len(self.dataset)):
log = ''
log += '{}\t'.format(idx)
for lr in opt.dash_lr:
if lr in self.node2res[output_node]:
log += '{}\t'.format(sr_result[output_node][lr].psnr[idx])
log += '{}\t'.format(baseline_result[lr].psnr[idx])
log += '\t'
log += '{}\t'.format(sr_result[output_node][lr].ssim[idx])
log += '{}\t'.format(baseline_result[lr].ssim[idx])
log += '\t'
else:
log += '\t'
log += '\t'
log += '\t'
log += '\t'
log += '\t'
log += '\t'
detail_logger[output_node].info(log)
#measure dnn inference time
def evaluate_runtime(self):
log_name = datetime.now().strftime('result_runtime.log')
summary_logger = util.get_logger(opt.result_dir, log_name)
result = {}
log = ''
log += 'OutputNode\t'
for lr in opt.dash_lr:
log += '{}p\t'.format(lr)
result[lr] = {}
summary_logger.info(log)
batch_num = self.opt.test_num_batch
for lr in opt.dash_lr:
self.dataset.setTargetLR(lr)
self.model.setTargetScale(self.dataset.getTargetScale())
for node in self.model.getOutputNodes():
elapsed_times = []
t_w = RESOLUTION[lr][0]
t_h = RESOLUTION[lr][1]
input = torch.FloatTensor(batch_num, 3, t_w, t_h).random_(0,1).to(self.device)
try:
for _ in range(DUMMY_TRIAL):
output = self.model(input, node)
torch.cuda.synchronize()
for _ in range(TEST_TRIAL):
start_time = time.perf_counter()
output = self.model(input, node)
torch.cuda.synchronize()
end_time = time.perf_counter()
elapsed_time = (end_time - start_time)
elapsed_times.append(elapsed_time)
except Exception as e:
print(e)
sys.exit()
average_elapsed_time = np.sum(elapsed_times) / (TEST_TRIAL * batch_num)
result[lr][node] = average_elapsed_time
print('[Resolution: Size ({}x{}), OutputNode: {}] / Inference time per frame(sec) {} / Max-Min(sec) {}'.format(t_w, t_h, node, round(average_elapsed_time, 4), round(np.max(elapsed_times) - np.min(elapsed_times), 4)))
for node in self.output_nodes:
log = ''
log += '{}\t'.format(node)
for lr in self.node2res[node]:
log += '{}\t'.format(round(result[lr][node],4))
summary_logger.info(log)
if __name__ == "__main__":
model = MultiNetwork(template.get_nas_config(opt.quality))
dataset = DatasetForDASH(opt)
evaluator = Tester(opt, model, dataset)
#evaluator.evaluate_quality()
evaluator.evaluate_runtime()