-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathtrainer.py
executable file
·140 lines (111 loc) · 6.04 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import os, sys, logging, math, random, time
from datetime import datetime
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
import imageio
import utility as util
class Trainer():
def __init__(self, opt, model, dataset):
self.opt = opt
self.model = model
self.dataset = dataset
self.device = torch.device("cuda" if opt.use_cuda else "cpu")
self.timer = util.timer()
self.epoch = 0
#build optimizer
self.optimizer_dict = {}
for scale, _ in model.scale_dict.items():
self.optimizer_dict[scale] = optim.Adam(model.networks[model.scale_dict[scale]].parameters(), lr=opt.lr, weight_decay=opt.weight_decay)
self.loss_func = self._get_loss_func(opt.loss_type)
#load a model on a target device
self.model = self.model.to(self.device)
def _get_loss_func(self, loss_type):
if loss_type == 'l2':
return nn.MSELoss()
elif loss_type == 'l1':
return nn.L1Loss()
else:
raise NotImplementedError
def _adjust_learning_rate(self, epoch):
"""Sets the learning rate to the initial LR decayed by 10 every 10 epochs"""
if self.opt.lr_decay_epoch is not None:
lr = self.opt.lr * (self.opt.lr_decay_rate ** (epoch // self.opt.lr_decay_epoch))
else:
lr = self.opt.lr
for _, optimizer in self.optimizer_dict.items():
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def train_one_epoch(self):
self.timer.tic()
#decay learning rate
self._adjust_learning_rate(self.epoch)
#iterate over low-resolutions
self.model.train()
self.dataset.setDatasetType('train')
train_dataloader = DataLoader(dataset=self.dataset, num_workers=self.opt.num_thread, batch_size=self.opt.num_batch, pin_memory=True, shuffle=True)
for lr in self.opt.dash_lr:
self.dataset.setTargetLR(lr)
scale = self.dataset.getTargetScale()
self.model.setTargetScale(scale)
#iterate over training image patches
for iteration, batch in enumerate(train_dataloader, 1):
input, target = batch[0], batch[1]
input, target = input.to(self.device), target.to(self.device)
self.optimizer_dict[scale].zero_grad()
loss = self.loss_func(self.model(input), target)
loss.backward()
self.optimizer_dict[scale].step()
if iteration % 10 == 0:
util.print_progress(iteration, len(self.dataset)/self.opt.num_batch, 'Train Progress ({}p):'.format(lr), 'Complete', 1, 50)
self.epoch += 1
print('Epoch[{}-train](complete): {}sec'.format(self.epoch, self.timer.toc()))
def validate(self):
with torch.no_grad():
self.model.eval()
self.dataset.setDatasetType('valid')
valid_dataloader = DataLoader(dataset=self.dataset, num_workers=self.opt.num_thread, batch_size=1, pin_memory=True, shuffle=False)
#iterate over low-resolutions
for lr in self.opt.dash_lr:
self.dataset.setTargetLR(lr)
self.model.setTargetScale(self.dataset.getTargetScale())
#iterate over validation images
total_sr_psnr = {}
total_baseline_psnr = []
for iteration, batch in enumerate(valid_dataloader, 1):
input, upscaled, target = batch[0], batch[1], batch[2]
upscaled_np, target_np = torch.squeeze(upscaled, 0).permute(1, 2, 0).numpy(), torch.squeeze(target, 0).permute(1, 2, 0).numpy()
input, upscaled, target = input.to(self.device), upscaled.to(self.device), target.to(self.device)
psnr_baseline = util.get_psnr(upscaled_np, target_np)
total_baseline_psnr.append(psnr_baseline)
#iterate over output nodes
for node in self.model.getOutputNodes():
output = self.model(input, node)
output = torch.squeeze(torch.clamp(output, min=0, max=1.), 0).permute(1, 2, 0)
output_np = output.to('cpu').numpy()
psnr_sr = util.get_psnr(output_np, target_np)
if node not in total_sr_psnr:
total_sr_psnr[node] = []
total_sr_psnr[node].append(psnr_sr)
else:
total_sr_psnr[node].append(psnr_sr)
#save an image for the last node
if node == self.model.getOutputNodes()[-1]:
output_np *= 255
upscaled_np *= 255
target_np *= 255
imageio.imwrite('{}/{}_{}_output.png'.format(self.opt.result_dir, lr, iteration), output_np.astype(np.uint8))
imageio.imwrite('{}/{}_{}_baseline.png'.format(self.opt.result_dir, lr, iteration), upscaled_np.astype(np.uint8))
imageio.imwrite('{}/{}_{}_target.png'.format(self.opt.result_dir, lr, iteration), target_np.astype(np.uint8))
util.print_progress(iteration, len(self.dataset), 'Valid Progress ({}p):'.format(lr), 'Complete', 1, 50)
for node in self.model.getOutputNodes():
print("Epoch[{}-validation-{}-{}p] PSNR (output): {:.3f} PSNR (baseline): {:.3f}".format(self.epoch, node, lr, np.mean(total_sr_psnr[node]), np.mean(total_baseline_psnr)))
def save_model(self):
save_path = os.path.join(self.opt.checkpoint_dir, 'epoch_{}.pth'.format(self.epoch))
torch.save(self.model.state_dict(), save_path)
def save_dnn_chunk(self):
self.model.save_chunk(self.opt.checkpoint_dir)
if __name__ == "__main__":
train()