-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathP2PNET.py
246 lines (183 loc) · 11.2 KB
/
P2PNET.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import os
import sys
import collections
BASE_DIR = os.path.dirname(__file__)
sys.path.append(BASE_DIR)
sys.path.append( BASE_DIR + "/pointnet_plusplus/utils")
sys.path.append( BASE_DIR + "/pointnet_plusplus/tf_ops")
sys.path.append( BASE_DIR + "/pointnet_plusplus/tf_ops/3d_interpolation")
sys.path.append( BASE_DIR + "/pointnet_plusplus/tf_ops/grouping")
sys.path.append( BASE_DIR + "/pointnet_plusplus/tf_ops/sampling")
import tensorflow as tf
import numpy as np
import tf_util
from pointnet_util import pointnet_sa_module, pointnet_fp_module
Model = collections.namedtuple("Model", \
"pointSet_A_ph, pointSet_B_ph, \
is_training_ph,\
Predicted_A, Predicted_B, \
data_loss_A, shapeLoss_A, densityLoss_A, \
data_loss_B, shapeLoss_B, densityLoss_B, \
regul_loss, \
data_train, total_train, \
learning_rate, global_step, bn_decay, \
training_sum_ops, testing_sum_ops,\
train_dataloss_A_ph, train_dataloss_B_ph, train_regul_ph, \
test_dataloss_A_ph, test_dataloss_B_ph, test_regul_ph" )
def create_model( FLAGS ):
############################################################
#################### Hyper-parameters ####################
##############################################################
global_step = tf.train.get_or_create_global_step()
learning_rate = tf.train.exponential_decay(
0.001, # base learning rate
global_step * FLAGS.batch_size, # global_var indicating the number of steps
FLAGS.example_num * FLAGS.decayEpoch, # step size
0.5, # decay rate
staircase=True
)
learning_rate = tf.maximum(learning_rate, 1e-4)
bn_momentum = tf.train.exponential_decay(
0.5,
global_step * FLAGS.batch_size, # global_var indicating the number of steps
FLAGS.example_num * FLAGS.decayEpoch * 2, # step size,
0.5, # decay rate
staircase=True
)
bn_decay = tf.minimum(0.99, 1 - bn_momentum)
##############################################################
#################### Create the network ####################
##############################################################
pointSet_A_ph = tf.placeholder( tf.float32, shape=(FLAGS.batch_size, FLAGS.point_num, 3) )
pointSet_B_ph = tf.placeholder( tf.float32, shape=(FLAGS.batch_size, FLAGS.point_num, 3) )
is_training_ph = tf.placeholder( tf.bool, shape=() )
noise1 = None
noise2 = None
if FLAGS.noiseLength > 0:
noise1 = tf.random_normal(shape=[FLAGS.batch_size, FLAGS.point_num, FLAGS.noiseLength], mean=0.0, stddev=1, dtype=tf.float32)
noise2 = tf.random_normal(shape=[FLAGS.batch_size, FLAGS.point_num, FLAGS.noiseLength], mean=0.0, stddev=1, dtype=tf.float32)
with tf.variable_scope("p2pnet_A2B") as scope:
displace_A2B = get_displacements( pointSet_A_ph, is_training_ph, noise1, FLAGS, bn_decay )
with tf.variable_scope("p2pnet_B2A") as scope:
displace_B2A = get_displacements( pointSet_B_ph, is_training_ph, noise2, FLAGS, bn_decay )
Predicted_A = pointSet_B_ph + displace_B2A
Predicted_B = pointSet_A_ph + displace_A2B
data_loss_A, shapeLoss_A, densityLoss_A = get_Geometric_Loss(Predicted_A, pointSet_A_ph, FLAGS)
data_loss_B, shapeLoss_B, densityLoss_B = get_Geometric_Loss(Predicted_B, pointSet_B_ph, FLAGS)
if FLAGS.regularWeight > 0:
regul_loss = get_Regularizing_Loss(pointSet_A_ph, pointSet_B_ph, Predicted_A, Predicted_B)
else:
regul_loss = tf.constant(0.0, dtype=tf.float32)
DataLoss = data_loss_A + data_loss_B
TotalLoss = DataLoss + regul_loss * FLAGS.regularWeight
train_variables = tf.trainable_variables()
trainer = tf.train.AdamOptimizer(learning_rate)
data_train_op = trainer.minimize(DataLoss, var_list=train_variables, global_step=global_step)
total_train_op = trainer.minimize(TotalLoss, var_list=train_variables, global_step=global_step)
data_train = data_train_op
total_train = total_train_op
##############################################################
#################### Create summarizers ####################
##############################################################
train_dataloss_A_ph = tf.placeholder(tf.float32, shape=())
train_dataloss_B_ph = tf.placeholder(tf.float32, shape=())
train_regul_ph = tf.placeholder(tf.float32, shape=())
test_dataloss_A_ph = tf.placeholder(tf.float32, shape=())
test_dataloss_B_ph = tf.placeholder(tf.float32, shape=())
test_regul_ph = tf.placeholder(tf.float32, shape=())
lr_sum_op = tf.summary.scalar('learning rate', learning_rate)
global_step_sum_op = tf.summary.scalar('batch_number', global_step)
train_dataloss_A_sum_op = tf.summary.scalar('train_dataloss_A', train_dataloss_A_ph)
train_dataloss_B_sum_op = tf.summary.scalar('train_dataloss_B', train_dataloss_B_ph)
train_regul_sum_op = tf.summary.scalar('train_regul', train_regul_ph)
test_dataloss_A_sum_op = tf.summary.scalar('test_dataloss_A', test_dataloss_A_ph)
test_dataloss_B_sum_op = tf.summary.scalar('test_dataloss_B', test_dataloss_B_ph)
test_regul_sum_op = tf.summary.scalar('test_regul', test_regul_ph)
training_sum_ops = tf.summary.merge( \
[lr_sum_op, train_dataloss_A_sum_op, train_dataloss_B_sum_op, train_regul_sum_op])
testing_sum_ops = tf.summary.merge( \
[test_dataloss_A_sum_op, test_dataloss_B_sum_op, test_regul_sum_op ])
return Model(
pointSet_A_ph=pointSet_A_ph, pointSet_B_ph=pointSet_B_ph,
is_training_ph=is_training_ph,
Predicted_A=Predicted_A, Predicted_B=Predicted_B,
data_loss_A=data_loss_A, shapeLoss_A=shapeLoss_A, densityLoss_A=densityLoss_A,
data_loss_B=data_loss_B, shapeLoss_B=shapeLoss_B, densityLoss_B=densityLoss_B,
regul_loss=regul_loss,
data_train=data_train, total_train=total_train,
learning_rate=learning_rate, global_step=global_step, bn_decay=bn_decay,
training_sum_ops=training_sum_ops, testing_sum_ops=testing_sum_ops,
train_dataloss_A_ph=train_dataloss_A_ph, train_dataloss_B_ph=train_dataloss_B_ph, train_regul_ph=train_regul_ph, \
test_dataloss_A_ph=test_dataloss_A_ph, test_dataloss_B_ph=test_dataloss_B_ph, test_regul_ph=test_regul_ph
)
def get_displacements(input_points, is_training, noise, FLAGS, bn_decay=None):
""" Semantic segmentation PointNet, input is BxNx3, output Bxnum_class """
batch_size = FLAGS.batch_size
num_points = FLAGS.point_num
point_cloud = input_points
l0_xyz = point_cloud
l0_points = None
# Set Abstraction layers
l1_xyz, l1_points, l1_indices = pointnet_sa_module(l0_xyz, l0_points, npoint=1024, radius=0.1 * FLAGS.radiusScal, nsample=64,
mlp=[64, 64, 128], mlp2=None, group_all=False,
is_training=is_training, bn_decay=bn_decay, scope='layer1')
l2_xyz, l2_points, l2_indices = pointnet_sa_module(l1_xyz, l1_points, npoint=384, radius=0.2* FLAGS.radiusScal, nsample=64,
mlp=[128, 128, 256], mlp2=None, group_all=False,
is_training=is_training, bn_decay=bn_decay, scope='layer2')
l3_xyz, l3_points, l3_indices = pointnet_sa_module(l2_xyz, l2_points, npoint=128, radius=0.4* FLAGS.radiusScal, nsample=64,
mlp=[256, 256, 512], mlp2=None, group_all=False,
is_training=is_training, bn_decay=bn_decay, scope='layer3')
# PointNet
l4_xyz, l4_points, l4_indices = pointnet_sa_module(l3_xyz, l3_points, npoint=None, radius=None, nsample=None,
mlp=[512, 512, 1024], mlp2=None, group_all=True,
is_training=is_training, bn_decay=bn_decay, scope='layer4')
# Feature Propagation layers
# l4_points = pointnet_fp_module(l4_xyz, l5_xyz, l4_points, l5_points, [512,512], is_training, bn_decay, scope='fa_layer0')
l3_points = pointnet_fp_module(l3_xyz, l4_xyz, l3_points, l4_points, [512, 512], is_training, bn_decay, scope='fa_layer1')
l2_points = pointnet_fp_module(l2_xyz, l3_xyz, l2_points, l3_points, [512, 256], is_training, bn_decay, scope='fa_layer2')
l1_points = pointnet_fp_module(l1_xyz, l2_xyz, l1_points, l2_points, [256, 128], is_training, bn_decay, scope='fa_layer3')
l0_points = pointnet_fp_module(l0_xyz, l1_xyz, l0_points, l1_points, [128, 128, 128], is_training, bn_decay, scope='fa_layer4')
if noise is not None:
l0_points = tf.concat(axis=2, values=[l0_points, noise])
net = tf_util.conv1d(l0_points, 128, 1, padding='VALID', bn=True, is_training=is_training, scope='fc1', bn_decay=bn_decay )
net = tf_util.conv1d(net, 64, 1, padding='VALID', bn=True, is_training=is_training, scope='fc2', bn_decay=bn_decay)
net = tf_util.conv1d(net, 3, 1, padding='VALID', activation_fn=None, scope='fc3')
displacements = tf.sigmoid(net) * FLAGS.range_max * 2 - FLAGS.range_max
return displacements
def get_Geometric_Loss(predictedPts, targetpoints, FLAGS):
# calculate shape loss
square_dist = pairwise_l2_norm2_batch(targetpoints, predictedPts)
dist = tf.sqrt( square_dist )
minRow = tf.reduce_min(dist, axis=2)
minCol = tf.reduce_min(dist, axis=1)
shapeLoss = tf.reduce_mean(minRow) + tf.reduce_mean(minCol)
# calculate density loss
square_dist2 = pairwise_l2_norm2_batch(targetpoints, targetpoints)
dist2 = tf.sqrt(square_dist2)
knndis = tf.nn.top_k(tf.negative(dist), k=FLAGS.nnk)
knndis2 = tf.nn.top_k(tf.negative(dist2), k=FLAGS.nnk)
densityLoss = tf.reduce_mean(tf.abs(knndis.values - knndis2.values))
data_loss = shapeLoss + densityLoss * FLAGS.densityWeight
return data_loss, shapeLoss, densityLoss
def get_Regularizing_Loss(pointSet_A_ph, pointSet_B_ph, Predicted_A, Predicted_B):
displacements_A = tf.concat(axis=2, values=[pointSet_A_ph, Predicted_B])
displacements_B = tf.concat(axis=2, values=[Predicted_A, pointSet_B_ph])
square_dist = pairwise_l2_norm2_batch( displacements_A, displacements_B )
dist = tf.sqrt(square_dist)
minRow = tf.reduce_min(dist, axis=2)
minCol = tf.reduce_min(dist, axis=1)
RegularLoss = (tf.reduce_mean(minRow) + tf.reduce_mean(minCol))/2
return RegularLoss
def pairwise_l2_norm2_batch(x, y, scope=None):
with tf.op_scope([x, y], scope, 'pairwise_l2_norm2_batch'):
nump_x = tf.shape(x)[1]
nump_y = tf.shape(y)[1]
xx = tf.expand_dims(x, -1)
xx = tf.tile(xx, tf.stack([1, 1, 1, nump_y]))
yy = tf.expand_dims(y, -1)
yy = tf.tile(yy, tf.stack([1, 1, 1, nump_x]))
yy = tf.transpose(yy, perm=[0, 3, 2, 1])
diff = tf.subtract(xx, yy)
square_diff = tf.square(diff)
square_dist = tf.reduce_sum(square_diff, 2)
return square_dist