-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFINAN_ASSET_MOMENTS_VAR_LIBR.bas
executable file
·808 lines (666 loc) · 31.8 KB
/
FINAN_ASSET_MOMENTS_VAR_LIBR.bas
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
Attribute VB_Name = "FINAN_ASSET_MOMENTS_VAR_LIBR"
Option Explicit 'Requires that all variables to be declared explicitly.
Option Base 1 'The "Option Base" statement allows to specify 0 or 1 as the
'default first index of arrays.
'Suggested Literature: "CoVaR", Tobias Adrian & Markus K. Brunnermeier, September 2008, Federal
'Reserve Bank of New York Staff Report
Function ASSET_PREDICTED_COVAR_FUNC(ByRef DATA1_RNG As Variant, _
ByRef DATA2_RNG As Variant, _
Optional ByVal CONFIDENCE_VAL As Double = 0.99, _
Optional ByVal DATA_TYPE As Integer = 0, _
Optional ByVal OUTPUT As Integer = 0)
Dim i As Long
Dim NROWS As Long
Dim HIST1_VAR As Double
Dim HIST2_VAR As Double
Dim TEMP1_SUM As Double
Dim TEMP2_SUM As Double
Dim CUMUL1_SUM As Double
Dim CUMUL2_SUM As Double
Dim DATA1_VECTOR As Variant
Dim DATA2_VECTOR As Variant
Dim TEMP_MATRIX As Variant
On Error GoTo ERROR_LABEL
'----------------------------------------------------------------------
DATA1_VECTOR = DATA1_RNG
If UBound(DATA1_VECTOR, 1) = 1 Then
DATA1_VECTOR = MATRIX_TRANSPOSE_FUNC(DATA1_VECTOR)
End If
If DATA_TYPE <> 0 Then
DATA1_VECTOR = MATRIX_PERCENT_FUNC(DATA1_VECTOR, 0)
End If
NROWS = UBound(DATA1_VECTOR, 1)
'----------------------------------------------------------------------
DATA2_VECTOR = DATA2_RNG
If UBound(DATA2_VECTOR, 1) = 1 Then
DATA2_VECTOR = MATRIX_TRANSPOSE_FUNC(DATA2_VECTOR)
End If
If DATA_TYPE <> 0 Then
DATA2_VECTOR = MATRIX_PERCENT_FUNC(DATA2_VECTOR, 0)
End If
'----------------------------------------------------------------------
If UBound(DATA2_VECTOR, 1) <> NROWS Then: GoTo ERROR_LABEL
'----------------------------------------------------------------------
HIST1_VAR = HISTOGRAM_PERCENTILE_FUNC(DATA1_VECTOR, 1 - CONFIDENCE_VAL, 1)
'HIST1_VAR = WorksheetFunction.PERCENTILE(DATA1_VECTOR, 1 - CONFIDENCE)
HIST2_VAR = HISTOGRAM_PERCENTILE_FUNC(DATA2_VECTOR, 1 - CONFIDENCE_VAL, 1)
'HIST2_VAR = WorksheetFunction.PERCENTILE(DATA2_VECTOR, 1 - CONFIDENCE)
'----------------------------------------------------------------------
Select Case OUTPUT
'----------------------------------------------------------------------
Case 0 'Historical VaR
'----------------------------------------------------------------------
ReDim TEMP_MATRIX(1 To NROWS, 1 To 2)
For i = 1 To NROWS
TEMP_MATRIX(i, 1) = 1
TEMP_MATRIX(i, 2) = DATA1_VECTOR(i, 1)
Next i
TEMP_MATRIX = QUANTILE_REGRESSION_FUNC(TEMP_MATRIX, DATA2_VECTOR, 1 - CONFIDENCE_VAL, , 1000, 10 ^ -10, 2)
HIST1_VAR = TEMP_MATRIX(1, 1) + TEMP_MATRIX(2, 1) * HIST1_VAR
'Absolute, % Deviation from VaR
ASSET_PREDICTED_COVAR_FUNC = Array(HIST1_VAR, HIST1_VAR / HIST2_VAR)
'----------------------------------------------------------------------
Case Else 'Historical ETL
'----------------------------------------------------------------------
TEMP1_SUM = 0: CUMUL1_SUM = 0
TEMP2_SUM = 0: CUMUL2_SUM = 0
For i = 1 To NROWS
If DATA1_VECTOR(i, 1) <= HIST1_VAR Then
TEMP1_SUM = TEMP1_SUM + 1
CUMUL1_SUM = CUMUL1_SUM + DATA1_VECTOR(i, 1)
End If
If DATA2_VECTOR(i, 1) <= HIST2_VAR Then
TEMP2_SUM = TEMP2_SUM + 1
CUMUL2_SUM = CUMUL2_SUM + DATA2_VECTOR(i, 1)
End If
Next i
ASSET_PREDICTED_COVAR_FUNC = Array(CUMUL1_SUM / TEMP1_SUM, CUMUL2_SUM / TEMP2_SUM)
'----------------------------------------------------------------------
End Select
'----------------------------------------------------------------------
Exit Function
ERROR_LABEL:
ASSET_PREDICTED_COVAR_FUNC = Err.number
End Function
'Maximum Likelihood estimation of a simple Gaussian respectively normal
'mixture distribution
'Gaussian Mixture Distribution (DATA_RNG --> DATE / DATA
Function ASSET_GAUSSIAN_MIXTURE_MLE_FUNC(ByRef DATA_RNG As Variant, _
Optional ByRef PARAM_RNG As Variant, _
Optional ByVal INITIAL_PROBABILITY As Double = 0.6, _
Optional ByVal DATA_TYPE As Integer = 0, _
Optional ByVal LOG_SCALE As Integer = 0, _
Optional ByVal OUTPUT As Integer = 0)
Dim i As Long
Dim NROWS As Long
Dim MEAN_VAL As Double
Dim SIGMA_VAL As Double
Dim DATA_VECTOR As Variant
Dim DATE_VECTOR As Variant
Dim DATA_MATRIX As Variant
Dim PARAM_VECTOR As Variant
Dim SORTED_VECTOR As Variant
On Error GoTo ERROR_LABEL
DATA_MATRIX = DATA_RNG
If UBound(DATA_MATRIX, 1) = 1 Then
DATA_MATRIX = MATRIX_TRANSPOSE_FUNC(DATA_MATRIX)
End If
If DATA_TYPE <> 0 Then DATA_MATRIX = MATRIX_PERCENT_FUNC(DATA_MATRIX, LOG_SCALE)
NROWS = UBound(DATA_MATRIX, 1)
ReDim DATA_VECTOR(1 To NROWS, 1 To 1)
ReDim DATE_VECTOR(1 To NROWS, 1 To 1)
For i = 1 To NROWS
DATE_VECTOR(i, 1) = DATA_MATRIX(i, 1)
DATA_VECTOR(i, 1) = DATA_MATRIX(i, 2)
Next i
MEAN_VAL = MATRIX_MEAN_FUNC(DATA_VECTOR)(1, 1)
SIGMA_VAL = MATRIX_STDEV_FUNC(DATA_VECTOR)(1, 1)
SORTED_VECTOR = MATRIX_QUICK_SORT_FUNC(DATA_VECTOR, 1, 1)
'----------------------------------------------------------------------------------
If IsArray(PARAM_RNG) = True Then
'----------------------------------------------------------------------------------
PARAM_VECTOR = PARAM_RNG
If UBound(PARAM_VECTOR, 1) = 1 Then
PARAM_VECTOR = MATRIX_TRANSPOSE_FUNC(PARAM_VECTOR)
End If
'----------------------------------------------------------------------------------
Else
'----------------------------------------------------------------------------------
ReDim PARAM_VECTOR(1 To 5, 1 To 1)
PARAM_VECTOR(1, 1) = INITIAL_PROBABILITY
PARAM_VECTOR(2, 1) = Abs(MEAN_VAL)
PARAM_VECTOR(3, 1) = SIGMA_VAL
PARAM_VECTOR(4, 1) = -PARAM_VECTOR(2, 1)
PARAM_VECTOR(5, 1) = PARAM_VECTOR(3, 1)
PARAM_VECTOR = NELDER_MEAD_OPTIMIZATION2_FUNC("GAUSSIAN_MIXTURE_OBJ_FUNC", DATA_VECTOR, PARAM_VECTOR)
'----------------------------------------------------------------------------------
End If
'----------------------------------------------------------------------------------
'----------------------------------------------------------------------------------
Select Case OUTPUT
'----------------------------------------------------------------------------------
Case 0
'----------------------------------------------------------------------------------
ReDim DATA_MATRIX(0 To NROWS, 1 To 12)
DATA_MATRIX(0, 1) = "DATE"
DATA_MATRIX(0, 2) = "DATA"
DATA_MATRIX(0, 3) = "NORMAL (PROB DENSITY)"
DATA_MATRIX(0, 4) = "NORMAL MIXTURE (PROB DENSITY)"
DATA_MATRIX(0, 5) = "NORMAL MIX 1 (PROB DENSITY)"
DATA_MATRIX(0, 6) = "NORMAL MIX 2 (PROB DENSITY)"
DATA_MATRIX(0, 7) = "lnN (LN PROB DENSITY)"
DATA_MATRIX(0, 8) = "lnNM (LN PROB DENSITY)"
DATA_MATRIX(0, 9) = "SORTED DATA"
DATA_MATRIX(0, 10) = "EMPIRICAL (CUMUL)"
DATA_MATRIX(0, 11) = "NORMAL (CUMUL)"
DATA_MATRIX(0, 12) = "NORMAL MIXTURE (CUMUL)"
For i = 1 To NROWS
DATA_MATRIX(i, 1) = DATE_VECTOR(i, 1)
DATA_MATRIX(i, 2) = DATA_VECTOR(i, 1)
DATA_MATRIX(i, 3) = NORMDIST_FUNC(DATA_MATRIX(i, 2), MEAN_VAL, SIGMA_VAL, 0)
DATA_MATRIX(i, 4) = PARAM_VECTOR(1, 1) * NORMDIST_FUNC(DATA_MATRIX(i, 2), PARAM_VECTOR(2, 1), PARAM_VECTOR(3, 1), 0) + (1 - PARAM_VECTOR(1, 1)) * NORMDIST_FUNC(DATA_MATRIX(i, 2), PARAM_VECTOR(4, 1), PARAM_VECTOR(5, 1), 0)
DATA_MATRIX(i, 5) = NORMDIST_FUNC(DATA_MATRIX(i, 2), PARAM_VECTOR(2, 1), PARAM_VECTOR(3, 1), 0)
DATA_MATRIX(i, 6) = NORMDIST_FUNC(DATA_MATRIX(i, 2), PARAM_VECTOR(4, 1), PARAM_VECTOR(5, 1), 0)
DATA_MATRIX(i, 7) = Log(DATA_MATRIX(i, 3))
DATA_MATRIX(i, 8) = Log(DATA_MATRIX(i, 4))
DATA_MATRIX(i, 9) = SORTED_VECTOR(i, 1)
DATA_MATRIX(i, 10) = i / NROWS
DATA_MATRIX(i, 11) = NORMSDIST_FUNC(DATA_MATRIX(i, 9), MEAN_VAL, SIGMA_VAL, 0)
DATA_MATRIX(i, 12) = PARAM_VECTOR(1, 1) * NORMSDIST_FUNC(DATA_MATRIX(i, 9), PARAM_VECTOR(2, 1), PARAM_VECTOR(3, 1), 0) + (1 - PARAM_VECTOR(1, 1)) * NORMSDIST_FUNC(DATA_MATRIX(i, 9), PARAM_VECTOR(4, 1), PARAM_VECTOR(5, 1), 0)
Next i
ASSET_GAUSSIAN_MIXTURE_MLE_FUNC = DATA_MATRIX
'----------------------------------------------------------------------------------
Case Else
'----------------------------------------------------------------------------------
ASSET_GAUSSIAN_MIXTURE_MLE_FUNC = PARAM_VECTOR
'----------------------------------------------------------------------------------
End Select
'----------------------------------------------------------------------------------
Exit Function
ERROR_LABEL:
ASSET_GAUSSIAN_MIXTURE_MLE_FUNC = Err.number
End Function
Private Function GAUSSIAN_MIXTURE_OBJ_FUNC(ByRef DATA_RNG As Variant, _
ByRef PARAM_RNG As Variant)
Dim i As Long
Dim TEMP_SUM As Double
Dim DATA_VECTOR As Variant
Dim PARAM_VECTOR As Variant
On Error GoTo ERROR_LABEL
DATA_VECTOR = DATA_RNG
If UBound(DATA_VECTOR, 1) = 1 Then
DATA_VECTOR = MATRIX_TRANSPOSE_FUNC(DATA_VECTOR)
End If
PARAM_VECTOR = PARAM_RNG
If UBound(PARAM_VECTOR, 1) = 1 Then
PARAM_VECTOR = MATRIX_TRANSPOSE_FUNC(PARAM_VECTOR)
End If
If (PARAM_VECTOR(1, 1) < 0) Or (PARAM_VECTOR(1, 1) > 1) Then
GAUSSIAN_MIXTURE_OBJ_FUNC = 2 ^ 52
Else
TEMP_SUM = 0
For i = 1 To UBound(DATA_VECTOR, 1)
TEMP_SUM = TEMP_SUM + Log(PARAM_VECTOR(1, 1) * NORMDIST_FUNC(DATA_VECTOR(i, 1), PARAM_VECTOR(2, 1), PARAM_VECTOR(3, 1), 0) + (1 - PARAM_VECTOR(1, 1)) * NORMDIST_FUNC(DATA_VECTOR(i, 1), PARAM_VECTOR(4, 1), PARAM_VECTOR(5, 1), 0))
Next i
GAUSSIAN_MIXTURE_OBJ_FUNC = -TEMP_SUM
End If
Exit Function
ERROR_LABEL:
GAUSSIAN_MIXTURE_OBJ_FUNC = Err.number
End Function
'************************************************************************************
'************************************************************************************
'FUNCTION : ASSET_GPD_VAR_FUNC
'DESCRIPTION : Tail Risk Modeling: Fitting the Generalized Pareto
'Distribution to historical returns and calculating VaR,
'Expected Shortfall (expected loss beyond VaR).
'LIBRARY : FINAN_ASSET
'GROUP : VAR
'ID : 001
'AUTHOR : RAFAEL NICOLAS FERMIN COTA
'************************************************************************************
'************************************************************************************
Function ASSET_GPD_VAR_FUNC(ByRef DATA_RNG As Variant, _
Optional ByVal THRESHOLD As Double = -1, _
Optional ByVal SCALE_VAL As Double = 0.654513425377483, _
Optional ByVal SHAPE_VAL As Double = 0.115568986717223, _
Optional ByVal CONFIDENCE_VAL As Double = 0.01, _
Optional ByVal DATA_TYPE As Integer = 0, _
Optional ByVal LOG_SCALE As Integer = 0, _
Optional ByVal OUTPUT As Integer = 2)
Dim i As Long
Dim j As Long
Dim NROWS As Long
Dim PI_VAL As Double
Dim TEMP_SUM As Double
Dim TEMP_VAL As Double
Dim TEMP_ARR As Variant
Dim TEMP_VECTOR As Variant
Dim DATA_VECTOR As Variant
Dim TEMP_MATRIX As Variant
On Error GoTo ERROR_LABEL
DATA_VECTOR = DATA_RNG
If UBound(DATA_VECTOR, 1) = 1 Then: DATA_VECTOR = MATRIX_TRANSPOSE_FUNC(DATA_VECTOR)
If DATA_TYPE <> 0 Then: DATA_VECTOR = MATRIX_PERCENT_FUNC(DATA_VECTOR, LOG_SCALE)
'------------------------------------------------------------------------------
Select Case OUTPUT
'------------------------------------------------------------------------------
Case 0
'------------------------------------------------------------------------------
NROWS = UBound(DATA_VECTOR, 1)
PI_VAL = 3.14159265358979
ReDim TEMP_VECTOR(1 To 12, 1 To 2)
TEMP_VECTOR(1, 1) = "NUMBER OF OBSERVATIONS"
TEMP_VECTOR(2, 1) = "PER PERIOD VOLATILITY"
TEMP_VECTOR(3, 1) = "PER PERIOD AVG RETURN"
TEMP_VECTOR(4, 1) = "CONFIDENCE LEVEL"
TEMP_VECTOR(5, 1) = "HISTORICAL VAR"
TEMP_VECTOR(6, 1) = "HISTORICAL EXECTED SHORTFALL"
TEMP_VECTOR(7, 1) = "PARAMETRIC NORMAL VAR"
TEMP_VECTOR(8, 1) = "NORMAL EXPECTED SHORTFALL"
TEMP_VECTOR(9, 1) = "GPD VAR"
TEMP_VECTOR(10, 1) = "GPD EXPECTED SHORTFALL"
TEMP_VECTOR(11, 1) = "THRESHOLD RETURN"
TEMP_VECTOR(12, 1) = "NUMBER OF EXCEEDANCES"
TEMP_VECTOR(1, 2) = NROWS
TEMP_VECTOR(2, 2) = MATRIX_STDEV_FUNC(DATA_VECTOR)(1, 1)
TEMP_VECTOR(3, 2) = MATRIX_MEAN_FUNC(DATA_VECTOR)(1, 1)
TEMP_VECTOR(4, 2) = 1 - CONFIDENCE_VAL
j = CONFIDENCE_VAL * NROWS
TEMP_ARR = MATRIX_QUICK_SORT_FUNC(DATA_VECTOR, 1, 1)
TEMP_VECTOR(5, 2) = TEMP_ARR(j, 1)
TEMP_VECTOR(6, 2) = ASSET_GPD_MEAN_FUNC(DATA_VECTOR, THRESHOLD)
TEMP_VECTOR(7, 2) = NORMSINV_FUNC(1 - TEMP_VECTOR(4, 2), TEMP_VECTOR(3, 2), TEMP_VECTOR(2, 2), 0)
TEMP_VECTOR(8, 2) = -TEMP_VECTOR(2, 2) * Exp(-0.5 * NORMSINV_FUNC(1 - TEMP_VECTOR(4, 2), 0, 1, 0) ^ 2) / ((1 - TEMP_VECTOR(4, 2)) * Sqr(2 * PI_VAL))
TEMP_VAL = ASSET_GPD_COUNT_FUNC(DATA_VECTOR, THRESHOLD)
TEMP_VECTOR(9, 2) = THRESHOLD - SCALE_VAL / SHAPE_VAL * (((TEMP_VECTOR(1, 2) / TEMP_VAL) * (1 - TEMP_VECTOR(4, 2))) ^ (-SHAPE_VAL) - 1)
TEMP_VECTOR(10, 2) = -(-TEMP_VECTOR(9, 2) + SCALE_VAL + SHAPE_VAL * THRESHOLD) / (1 - SHAPE_VAL)
TEMP_VECTOR(11, 2) = THRESHOLD
TEMP_VECTOR(12, 2) = TEMP_VAL
ASSET_GPD_VAR_FUNC = TEMP_VECTOR
'------------------------------------------------------------------------------
Case Else
'------------------------------------------------------------------------------
TEMP_ARR = GPD_DIST_FUNC(DATA_VECTOR, THRESHOLD)
NROWS = UBound(TEMP_ARR, 1)
ReDim TEMP_MATRIX(0 To NROWS, 1 To 6)
TEMP_MATRIX(0, 1) = "INDEX"
TEMP_MATRIX(0, 2) = "R<=T"
TEMP_MATRIX(0, 3) = "EMP CDF"
TEMP_MATRIX(0, 4) = "GPD CDF"
TEMP_MATRIX(0, 5) = "GPD INV CDF"
TEMP_MATRIX(0, 6) = "SQR DIFF"
TEMP_SUM = 0
For i = 1 To NROWS
TEMP_MATRIX(i, 1) = i
TEMP_MATRIX(i, 2) = TEMP_ARR(i, 1)
TEMP_MATRIX(i, 3) = TEMP_ARR(i, 2)
If IsNumeric(TEMP_ARR(i, 1)) = True Then
TEMP_VAL = GPD_CDF_FUNC(-1 * TEMP_ARR(i, 1), SHAPE_VAL, SCALE_VAL, THRESHOLD * -1)
TEMP_MATRIX(i, 4) = 1 - TEMP_VAL
Else
TEMP_MATRIX(i, 4) = CVErr(xlErrNA)
End If
If IsNumeric(TEMP_ARR(i, 2)) = True Then
TEMP_VAL = GPD_INV_CDF_FUNC(1 - TEMP_ARR(i, 2), SHAPE_VAL, SCALE_VAL, THRESHOLD * -1)
TEMP_MATRIX(i, 5) = -1 * TEMP_VAL
TEMP_MATRIX(i, 6) = (TEMP_MATRIX(i, 5) - TEMP_MATRIX(i, 2)) ^ 2
TEMP_SUM = TEMP_SUM + TEMP_MATRIX(i, 6)
Else
TEMP_MATRIX(i, 5) = CVErr(xlErrNA)
TEMP_MATRIX(i, 6) = CVErr(xlErrNA)
End If
Next i
If OUTPUT = 1 Then
ASSET_GPD_VAR_FUNC = TEMP_MATRIX
Else 'RMSE
'...goal function of the distribution fitting: minimize square root
'of average squared deviation of the empirical form the theoretical
'distribution.
ASSET_GPD_VAR_FUNC = Sqr(TEMP_SUM / ASSET_GPD_COUNT_FUNC(DATA_VECTOR, THRESHOLD)) '...run Min SOLVER to re-fit the data
'Changing Cells: SCALE_VAL & SHAPE VAL
'Constraints: SCALE_VAL >= 0
End If
End Select
Exit Function
ERROR_LABEL:
ASSET_GPD_VAR_FUNC = Err.number
End Function
Private Function ASSET_GPD_MEAN_FUNC(ByRef DATA_RNG As Variant, _
ByVal THRESHOLD As Double)
Dim i As Long
Dim j As Long
Dim NROWS As Long
Dim TEMP_VAL As Double
Dim TEMP_SUM As Double
Dim DATA_VECTOR As Variant
On Error GoTo ERROR_LABEL
DATA_VECTOR = DATA_RNG
If UBound(DATA_VECTOR, 1) = 1 Then: DATA_VECTOR = MATRIX_TRANSPOSE_FUNC(DATA_VECTOR)
DATA_VECTOR = MATRIX_QUICK_SORT_FUNC(DATA_VECTOR, 1, 1)
NROWS = UBound(DATA_VECTOR, 1)
j = 0
TEMP_SUM = 0
For i = 1 To NROWS
TEMP_VAL = DATA_VECTOR(i, 1)
If TEMP_VAL <= THRESHOLD Then
j = j + 1
TEMP_SUM = TEMP_SUM + TEMP_VAL
End If
Next i
ASSET_GPD_MEAN_FUNC = TEMP_SUM / j
Exit Function
ERROR_LABEL:
ASSET_GPD_MEAN_FUNC = Err.number
End Function
Private Function ASSET_GPD_COUNT_FUNC(ByRef DATA_RNG As Variant, _
ByVal THRESHOLD As Double)
Dim i As Long
Dim j As Long
Dim NROWS As Long
Dim TEMP_VAL As Double
Dim DATA_VECTOR As Variant
On Error GoTo ERROR_LABEL
DATA_VECTOR = DATA_RNG
If UBound(DATA_VECTOR, 1) = 1 Then: DATA_VECTOR = MATRIX_TRANSPOSE_FUNC(DATA_VECTOR)
DATA_VECTOR = MATRIX_QUICK_SORT_FUNC(DATA_VECTOR, 1, 1)
NROWS = UBound(DATA_VECTOR, 1)
j = 0
For i = 1 To NROWS
TEMP_VAL = DATA_VECTOR(i, 1)
If TEMP_VAL <= THRESHOLD Then: j = j + 1
Next i
ASSET_GPD_COUNT_FUNC = j
Exit Function
ERROR_LABEL:
ASSET_GPD_COUNT_FUNC = Err.number
End Function
'************************************************************************************
'************************************************************************************
'FUNCTION : ASSET_TDIST_VAR_FUNC
'DESCRIPTION : Tail Risk Modeling: Fitting the T-Distribution to historical
'returns and calculating VaR, Expected Shortfall (expected loss beyond VaR).
'LIBRARY : FINAN_ASSET
'GROUP : VAR
'ID : 002
'AUTHOR : RAFAEL NICOLAS FERMIN COTA
'************************************************************************************
'************************************************************************************
Function ASSET_TDIST_VAR_FUNC(ByRef DATA_RNG As Variant, _
Optional ByVal nDEGREES As Variant = 30, _
Optional ByVal CONFIDENCE_VAL As Double = 0.025, _
Optional ByVal DATA_TYPE As Integer = 0, _
Optional ByVal LOG_SCALE As Integer = 0, _
Optional ByVal OUTPUT As Integer = 0)
Dim i As Long
Dim j As Long
Dim NROWS As Long
Dim TEMP_SUM As Double
Dim MEAN_VAL As Double
Dim VOLAT_VAL As Double
Dim DF_VAL As Double
Dim FLAG_VAL As Boolean 'IS FIT OF T DISTR BETTER THAN NORMAL DISTR?
Dim TEMP_VECTOR As Variant
Dim DATA_VECTOR As Variant
Dim TEMP_MATRIX As Variant
On Error GoTo ERROR_LABEL
DATA_VECTOR = DATA_RNG
If UBound(DATA_VECTOR, 1) = 1 Then
DATA_VECTOR = MATRIX_TRANSPOSE_FUNC(DATA_VECTOR)
End If
If DATA_TYPE <> 0 Then: DATA_VECTOR = MATRIX_PERCENT_FUNC(DATA_VECTOR, LOG_SCALE)
NROWS = UBound(DATA_VECTOR, 1)
DATA_VECTOR = MATRIX_QUICK_SORT_FUNC(DATA_VECTOR, 1, 1)
TEMP_VECTOR = FIT_TDIST_FUNC(DATA_VECTOR, nDEGREES)
DF_VAL = TEMP_VECTOR(LBound(TEMP_VECTOR) + 1)
FLAG_VAL = TEMP_VECTOR(LBound(TEMP_VECTOR) + 2)
Erase TEMP_VECTOR
MEAN_VAL = MATRIX_MEAN_FUNC(DATA_VECTOR)(1, 1)
VOLAT_VAL = MATRIX_STDEV_FUNC(DATA_VECTOR)(1, 1)
ReDim TEMP_MATRIX(0 To NROWS, 1 To 8)
TEMP_MATRIX(0, 1) = "INDEX"
TEMP_MATRIX(0, 2) = "SORTED RETURN"
TEMP_MATRIX(0, 3) = "STAND RETURN"
TEMP_MATRIX(0, 4) = "EMPIR CDF"
TEMP_MATRIX(0, 5) = "T-CDF"
TEMP_MATRIX(0, 6) = "T-CDF INV"
TEMP_MATRIX(0, 7) = "T-CDF FIT"
TEMP_MATRIX(0, 8) = "NORM FIT"
TEMP_SUM = 0
For i = 1 To NROWS
TEMP_MATRIX(i, 1) = i
TEMP_MATRIX(i, 2) = DATA_VECTOR(i, 1)
TEMP_MATRIX(i, 3) = (TEMP_MATRIX(i, 2) - MEAN_VAL) / VOLAT_VAL
TEMP_MATRIX(i, 4) = i / (1 + NROWS)
If TEMP_MATRIX(i, 3) > 0 Then
TEMP_MATRIX(i, 5) = TDIST_FUNC(TEMP_MATRIX(i, 3), DF_VAL, True)
Else
TEMP_MATRIX(i, 5) = 1 - TDIST_FUNC(-1 * TEMP_MATRIX(i, 3), DF_VAL, True)
End If
If TEMP_MATRIX(i, 4) < 0.5 Then
TEMP_MATRIX(i, 6) = INVERSE_TDIST_FUNC(TEMP_MATRIX(i, 4), DF_VAL)
Else
TEMP_MATRIX(i, 6) = INVERSE_TDIST_FUNC((1 - TEMP_MATRIX(i, 4)), DF_VAL) * -1
End If
TEMP_MATRIX(i, 7) = MEAN_VAL + TEMP_MATRIX(i, 6) * VOLAT_VAL
TEMP_MATRIX(i, 8) = MEAN_VAL + NORMSINV_FUNC(TEMP_MATRIX(i, 4), 0, 1, 0) * VOLAT_VAL
Next i
'------------------------------------------------------------------------------
Select Case OUTPUT
'------------------------------------------------------------------------------
Case 0
'------------------------------------------------------------------------------
NROWS = UBound(DATA_VECTOR, 1)
ReDim TEMP_VECTOR(1 To 10, 1 To 2)
TEMP_VECTOR(1, 1) = "NUMBER OF OBSERVATIONS"
TEMP_VECTOR(1, 2) = NROWS
TEMP_VECTOR(2, 1) = "PER PERIOD VOLATILITY"
TEMP_VECTOR(2, 2) = VOLAT_VAL
TEMP_VECTOR(3, 1) = "PER PERIOD AVG RETURN"
TEMP_VECTOR(3, 2) = MEAN_VAL
TEMP_VECTOR(4, 1) = "CONFIDENCE LEVEL"
TEMP_VECTOR(4, 2) = 1 - CONFIDENCE_VAL
TEMP_VECTOR(5, 1) = "HISTORICAL VAR"
j = CONFIDENCE_VAL * NROWS
TEMP_VECTOR(5, 2) = DATA_VECTOR(j, 1)
TEMP_VECTOR(6, 1) = "STUDENT T VAR"
TEMP_VECTOR(6, 2) = TEMP_MATRIX(j, 7)
TEMP_VECTOR(7, 1) = "NORMAL VAR"
TEMP_VECTOR(7, 2) = TEMP_MATRIX(j, 8)
TEMP_VECTOR(8, 1) = "UPPER BOUND DEGREES OF FREEDOM"
TEMP_VECTOR(8, 2) = nDEGREES
TEMP_VECTOR(9, 1) = "BEST-FIT DEGREES OF FREEDOM"
TEMP_VECTOR(9, 2) = DF_VAL
TEMP_VECTOR(10, 1) = "IS FIT OF T DISTR BETTER THAN NORMAL DISTR?"
TEMP_VECTOR(10, 2) = FLAG_VAL
ASSET_TDIST_VAR_FUNC = TEMP_VECTOR
'------------------------------------------------------------------------------
Case Else
'------------------------------------------------------------------------------
ASSET_TDIST_VAR_FUNC = TEMP_MATRIX
End Select
Exit Function
ERROR_LABEL:
ASSET_TDIST_VAR_FUNC = Err.number
End Function
'************************************************************************************
'************************************************************************************
'FUNCTION : ASSET_VARS_FUNC
'DESCRIPTION : Calculates parametric Value-At-Risk based
'LIBRARY : FINAN_ASSET
'GROUP : VAR
'ID : 001
'AUTHOR : RAFAEL NICOLAS FERMIN COTA
'************************************************************************************
'************************************************************************************
Function ASSET_VARS_FUNC(ByRef DATA_RNG As Variant, _
Optional ByVal CONFIDENCE_VAL As Double = 0.05, _
Optional ByVal DATA_TYPE As Integer = 0, _
Optional ByVal LOG_SCALE As Integer = 0, _
Optional ByVal PERIODS As Integer = 12, _
Optional ByVal COUNT_BASIS As Integer = 12)
'COUNT_BASIS = data frequency expressed as a fraction of a year
'PERIODS = horizon expressed as a fraction of a year
Dim i As Long
Dim NROWS As Long
Dim TEMP_SUM As Double
Dim TEMP_DEV As Double
Dim TEMP_VAR As Double
Dim MEAN_VAL As Double
Dim VOLAT_VAL As Double
Dim SKEW_VAL As Double
Dim KURT_VAL As Double
Dim FACTOR_VAL As Variant
Dim NORMSINV_VAL As Double
Dim NORMDIST_VAL As Double
Dim HVAR_VAL As Double
Dim NVAR_VAL As Double
Dim CVAR_VAL As Double
Dim MVAR_VAL As Double
Dim DATA_VECTOR As Variant
On Error GoTo ERROR_LABEL
DATA_VECTOR = DATA_RNG
If UBound(DATA_VECTOR, 1) = 1 Then
DATA_VECTOR = MATRIX_TRANSPOSE_FUNC(DATA_VECTOR)
End If
If DATA_TYPE <> 0 Then: DATA_VECTOR = MATRIX_PERCENT_FUNC(DATA_VECTOR, LOG_SCALE)
NROWS = UBound(DATA_VECTOR, 1)
GoSub MOMENTS_LINE
GoSub HVAR_LINE
GoSub NVAR_LINE
GoSub MVAR_LINE
GoSub CVAR_LINE
ASSET_VARS_FUNC = Array(MEAN_VAL, VOLAT_VAL, SKEW_VAL, KURT_VAL, NORMSINV_VAL, NORMDIST_VAL, HVAR_VAL, NVAR_VAL, MVAR_VAL, CVAR_VAL)
'----------------------------------------------------------------------------------------------------------------
Exit Function
'----------------------------------------------------------------------------------------------------------------
MOMENTS_LINE:
'----------------------------------------------------------------------------------------------------------------
TEMP_SUM = 0
For i = 1 To NROWS
TEMP_SUM = TEMP_SUM + DATA_VECTOR(i, 1)
Next i
MEAN_VAL = TEMP_SUM / NROWS
TEMP_DEV = 0: TEMP_SUM = 0: TEMP_VAR = 0
For i = 1 To NROWS
TEMP_DEV = (DATA_VECTOR(i, 1) - MEAN_VAL)
TEMP_SUM = TEMP_SUM + TEMP_DEV
TEMP_VAR = TEMP_DEV * TEMP_DEV + TEMP_VAR
Next i
VOLAT_VAL = (TEMP_VAR - TEMP_SUM * TEMP_SUM / NROWS) / (NROWS - 1)
'Variance: Corrected two-pass formula.
'VOLAT_VAL = Sqr(NROWS / (NROWS - 1)) * VOLAT_VAL 'Population
VOLAT_VAL = Sqr(VOLAT_VAL) 'Sample Standard Deviation
SKEW_VAL = 0: KURT_VAL = 0 ' Calculate 3rd and 4th moments
For i = 1 To NROWS
SKEW_VAL = SKEW_VAL + ((DATA_VECTOR(i, 1) - MEAN_VAL) / VOLAT_VAL) ^ 3
KURT_VAL = KURT_VAL + ((DATA_VECTOR(i, 1) - MEAN_VAL) / VOLAT_VAL) ^ 4
Next i
SKEW_VAL = SKEW_VAL / NROWS
' SKEW_VAL = SKEW_VAL * (NROWS / ((NROWS - 1) * (NROWS - 2))) 'Excel Definition
KURT_VAL = (KURT_VAL / NROWS) - 3
' KURT_VAL = (KURT_VAL * (NROWS * (NROWS + 1) / ((NROWS - 1) * (NROWS - 2) * (NROWS - 3)))) - ((3 * (NROWS - 1) ^ 2 / ((NROWS - 2) * (NROWS - 3)))) 'Excel Definition
NORMSINV_VAL = NORMSINV_FUNC(CONFIDENCE_VAL, 0, 1, 0)
NORMDIST_VAL = NORMDIST_FUNC(NORMSINV_VAL, 0, 1, 1)
'----------------------------------------------------------------------------------------------------------------
Return
'----------------------------------------------------------------------------------------------------------------
HVAR_LINE: 'Calculates Historical Value-At-Risk
'----------------------------------------------------------------------------------------------------------------
HVAR_VAL = HISTOGRAM_PERCENTILE_FUNC(DATA_VECTOR, CONFIDENCE_VAL, 1) * ((1 / PERIODS) / (1 / COUNT_BASIS))
'----------------------------------------------------------------------------------------------------------------
Return
'----------------------------------------------------------------------------------------------------------------
NVAR_LINE: 'Calculates Value-At-Risk based on the assumption of non-normal distribution
'----------------------------------------------------------------------------------------------------------------
NVAR_VAL = MEAN_VAL * ((1 / PERIODS) / (1 / COUNT_BASIS)) + NORMSINV_VAL * VOLAT_VAL * ((1 / PERIODS) / (1 / COUNT_BASIS)) ^ (0.5)
'----------------------------------------------------------------------------------------------------------------
Return
'----------------------------------------------------------------------------------------------------------------
MVAR_LINE: 'Calculates Value-At-Risk based on the assumption of non-normal distribution, making use of the Cornish-Fisher Expansion
'----------------------------------------------------------------------------------------------------------------
'Modified VaR (calcs with first three moments)
FACTOR_VAL = NORMSINV_VAL + (1 / 6) * (NORMSINV_VAL ^ 2 - 1) * SKEW_VAL + (1 / 24) * (NORMSINV_VAL ^ 3 - 3 * NORMSINV_VAL) * KURT_VAL - (1 / 36) * (2 * NORMSINV_VAL ^ 3 - 5 * NORMSINV_VAL) * SKEW_VAL ^ 2
MVAR_VAL = MEAN_VAL * ((1 / PERIODS) / (1 / COUNT_BASIS)) + FACTOR_VAL * VOLAT_VAL * ((1 / PERIODS) / (1 / COUNT_BASIS)) ^ (0.5)
'----------------------------------------------------------------------------------------------------------------
Return
'----------------------------------------------------------------------------------------------------------------
CVAR_LINE:
'Calculates Conditional Value-At-Risk based on the assumption of a normal distribution. Whereas VaR
'measures the maximum loss for a given confidence interval, "Conditional VaR" (CVaR) corresponds to the expected
'loss conditional on the loss being greater than or equal to the VaR. On the other hand, it's not really clear
'what 'expected' means once you get into the 1% tail. Conditional VaR answers an entirely hypothetical
'question; 'what is your expected loss in a 'normal market', once the market moves beyond normal limits? Because
'this question can never be answered empirically, conditional VaR cannot be validated or backtested.
'Conditional VaR is a useful specialized tool, primarily in optimization and in some highly stable situations. But
'VaR has far more general utility. CVar is also known as Expected Tail Loss and Expected Shortfall.
'----------------------------------------------------------------------------------------------------------------
CVAR_VAL = MEAN_VAL * ((1 / PERIODS) / (1 / COUNT_BASIS)) - (NORMDIST_VAL / CONFIDENCE_VAL) * VOLAT_VAL * ((1 / PERIODS) / (1 / COUNT_BASIS)) ^ (0.5)
'----------------------------------------------------------------------------------------------------------------
Return
'----------------------------------------------------------------------------------------------------------------
ERROR_LABEL:
'----------------------------------------------------------------------------------------------------------------
ASSET_VARS_FUNC = Err.number
'----------------------------------------------------------------------------------------------------------------
'Value-At-Risk (VaR) answers the question, "How much can the value of a
'portfolio decline with a given probability in a given time period?".
'The most common assumption is that returns follow a normal distribution.
'One of the properties of the normal distribution is that 95 percent of
'all observations occur within 1.96 standard deviations from the mean. This
'means that the probability that an observation will fall 1.96 standard
'deviations below the mean is only 2.5 percent. For the purposes of
'calculating VAR we are interested only in losses, not gains, so this is
'the relevant probability.
'Example: XYZ Fund has an (arithmetic) average monthly return of 2.03 percent
'and a standard deviation of 3.27 percent. Thus, its monthly VAR at the 2.5
'percent probability level is 2.03%-1.96*3.27=-4.38%, or $43.80 for a $1,000
'investment, meaning that the probability of losing more than this is 2.5 percent.
'VAR is often said to have an advantage over other risk measures in that it
'is more forward-looking. While it can be described as forward-looking, VAR
'relies on information derived from historical price time series many times.
'However, the strength of VAR models is that they allow us to construct a
'measure of risk for the portfolio not from its own past volatility but from the
'volatilities of risk factors affecting the portfolio as it is constituted today.
'Clearly, if the present composition of the fund's portfolio is significantly different
'than it was during the past year, then historical measures would not predict its
'future performance very accurately. However, as long as we know the fund's current
'composition and can assume that it will stay the same during the period for which
'we want to know the VAR, we can use a model based on the historical data about the
'risk factors to make statistical inferences about the probability distribution of
'the fund's future returns. In fact, for certain portfolios it is necessary to have
'a model based on risk factors even if one does not trade the portfolio at all. This
'is particularly true for portfolios consisting of bonds and/or options and futures,
'because such portfolios "age," that is, their characteristics change from the passage
'of time alone. In particular, as bonds approach maturity, their value approaches face
'value and their volatility diminishes and disappears altogether at maturity, when the
'bond can be redeemed at face value. Options, on the other hand, tend to lose value as
'they approach expiration, all other things being equal. This is one of the reasons why
'VAR analysis is used more frequently in derivatives and fixed-income investment and is
'less widespread for equities.
'Risk managers at mutual fund companies may also be interested in the value at risk as
'it applies to underperforming the fund's chosen benchmark. This measure, known as
'"relative" or "tracking" VAR, can be thought of as the VAR of a portfolio consisting
'of long positions in all the stocks the fund currently owns and a short position in
'the fund's benchmark.
'While VAR provides a view of risk based on low-probability losses, for symmetrical
'bell-shaped distributions such as those typically followed by stock returns, VAR is
'highly correlated with volatility as measured by the standard deviation. In fact,
'for normally distributed returns, value at risk is directly proportional to standard
'deviation.
'Comparison of VaR and Classical Portfolio Theory
'" Risk in portfolio theory = standard deviation of returns,
' Risk in VaR = maximum likely loss
'" Variance-covariance approach to VaR has the same theoretical
' basis as portfolio theory. Not so the historical simulation
' approach and the Monte Carlo simulation approach to VaR.
'" Portfolio theory is limited to market risk, while VaR can be
' applied to a much broader range of problems (credit, liquidity,
' operational risks etc.)
'" VaR can better accommodate statistical issues like non-normal returns
'" VaR can be applied for firm-wide risk management and provides better
' rules than portfolio theory to guide investment, hedging and portfolio
' management decisions.
'--------------------------------------------------------------------------------------
'--------------------------------------------------------------------------------------
End Function