-
Notifications
You must be signed in to change notification settings - Fork 52
/
Copy pathREADME.Rmd
487 lines (339 loc) · 20.5 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
---
output:
md_document:
variant: markdown_github
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, echo = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
warning = FALSE,
message = FALSE,
comment = "#>",
fig.path = "tools/README-"
)
```
[![R build status](https://github.com/kassambara/rstatix/workflows/R-CMD-check/badge.svg)](https://github.com/kassambara/rstatix/actions)
[![CRAN_Status_Badge](https://www.r-pkg.org/badges/version/rstatix)](https://cran.r-project.org/package=rstatix)
[![CRAN Checks](https://cranchecks.info/badges/summary/rstatix)](https://cran.r-project.org/web/checks/check_results_rstatix.html)
[![Downloads](https://cranlogs.r-pkg.org/badges/rstatix)](https://cran.r-project.org/package=rstatix)
[![Total Downloads](https://cranlogs.r-pkg.org/badges/grand-total/rstatix?color=orange)](https://cran.r-project.org/package=rstatix)
# rstatix
Provides a simple and intuitive pipe-friendly framework, coherent with the 'tidyverse' design philosophy, for performing basic statistical tests, including t-test, Wilcoxon test, ANOVA, Kruskal-Wallis and correlation analyses.
The output of each test is automatically transformed into a tidy data frame to facilitate visualization.
Additional functions are available for reshaping, reordering, manipulating and visualizing correlation matrix. Functions are also included to facilitate the analysis of factorial experiments, including purely 'within-Ss' designs (repeated measures), purely 'between-Ss' designs, and mixed 'within-and-between-Ss' designs.
It's also possible to compute several effect size metrics, including "eta squared" for ANOVA, "Cohen's d" for t-test and "Cramer's V" for the association between categorical variables. The package contains helper functions for identifying univariate and multivariate outliers, assessing normality and homogeneity of variances.
## Key functions
### Descriptive statistics
- `get_summary_stats()`: Compute summary statistics for one or multiple numeric variables. Can handle grouped data.
- `freq_table()`: Compute frequency table of categorical variables.
- `get_mode()`: Compute the mode of a vector, that is the most frequent values.
- `identify_outliers()`: Detect univariate outliers using boxplot methods.
- `mahalanobis_distance()`: Compute Mahalanobis Distance and Flag Multivariate Outliers.
- `shapiro_test()` and `mshapiro_test()`: Univariate and multivariate Shapiro-Wilk normality test.
### Comparing means
- `t_test()`: perform one-sample, two-sample and pairwise t-tests
- `wilcox_test()`: perform one-sample, two-sample and pairwise Wilcoxon tests
- `sign_test()`: perform sign test to determine whether there is a median difference between paired or matched observations.
- `anova_test()`: an easy-to-use wrapper around `car::Anova()` to perform different types of ANOVA tests, including **independent measures ANOVA**, **repeated measures ANOVA** and **mixed ANOVA**.
- `get_anova_test_table()`: extract ANOVA table from `anova_test()` results. Can apply sphericity correction automatically in the case of within-subject (repeated measures) designs.
- `welch_anova_test()`: Welch one-Way ANOVA test. A pipe-friendly wrapper around the base function `stats::oneway.test()`. This is is an alternative to the standard one-way ANOVA in the situation where the homogeneity of variance assumption is violated.
- `kruskal_test()`: perform kruskal-wallis rank sum test
- `friedman_test()`: Provides a pipe-friendly framework to perform a Friedman rank sum test, which is the non-parametric alternative to the one-way repeated measures ANOVA test.
- `get_comparisons()`: Create a list of possible pairwise comparisons between groups.
- `get_pvalue_position()`: autocompute p-value positions for plotting significance using ggplot2.
### Facilitating ANOVA computation in R
- `factorial_design()`: build factorial design for easily computing ANOVA using the `car::Anova()` function. This might be very useful for repeated measures ANOVA, which is hard to set up with the `car` package.
- `anova_summary()`: Create beautiful summary tables of ANOVA test results obtained from either `car::Anova()` or `stats::aov()`. The results include ANOVA table, generalized effect size and some assumption checks, such as Mauchly's test for sphericity in the case of repeated measures ANOVA.
### Post-hoc analyses
- `tukey_hsd()`: performs tukey post-hoc tests. Can handle different inputs formats: aov, lm, formula.
- `dunn_test()`: compute multiple pairwise comparisons following Kruskal-Wallis test.
- `games_howell_test()`: Performs Games-Howell test, which is used to compare all possible combinations of group differences when the assumption of homogeneity of variances is violated.
- `emmeans_test()`: pipe-friendly wrapper arround `emmeans` function to perform pairwise comparisons of estimated marginal means. Useful for post-hoc analyses following up ANOVA/ANCOVA tests.
### Comparing proportions
- `prop_test()`, `pairwise_prop_test()` and `row_wise_prop_test()`. Performs one-sample and two-samples z-test of proportions. Wrappers around the R base function `prop.test()` but have the advantage of performing pairwise and row-wise z-test of two proportions, the post-hoc tests following a significant chi-square test of homogeneity for 2xc and rx2 contingency tables.
- `fisher_test()`, `pairwise_fisher_test()` and `row_wise_fisher_test()`: Fisher's exact test for count data. Wrappers around the R base function `fisher.test()` but have the advantage of performing pairwise and row-wise fisher tests, the post-hoc tests following a significant chi-square test of homogeneity for 2xc and rx2 contingency tables.
- `chisq_test()`, `pairwise_chisq_gof_test()`, `pairwise_chisq_test_against_p()`: Performs chi-squared tests, including goodness-of-fit, homogeneity and independence tests.
- `binom_test()`, `pairwise_binom_test()`, `pairwise_binom_test_against_p()`: Performs exact binomial test and pairwise comparisons following a significant exact multinomial test. Alternative to the chi-square test of goodness-of-fit-test when the sample.
- `multinom_test()`: performs an exact multinomial test. Alternative to the chi-square test of goodness-of-fit-test when the sample size is small.
- `mcnemar_test()`: performs McNemar chi-squared test to compare paired proportions. Provides pairwise comparisons between multiple groups.
- `cochran_qtest()`: extension of the McNemar Chi-squared test for comparing more than two paired proportions.
- `prop_trend_test()`: Performs chi-squared test for trend in proportion. This test is also known as Cochran-Armitage trend test.
### Comparing variances
- `levene_test()`: Pipe-friendly framework to easily compute Levene's test for homogeneity of variance across groups. Handles grouped data.
- `box_m()`: Box's M-test for homogeneity of covariance matrices
### Effect Size
- `cohens_d()`: Compute cohen's d measure of effect size for t-tests.
- `wilcox_effsize()`: Compute Wilcoxon effect size (r).
- `eta_squared()` and `partial_eta_squared()`: Compute effect size for ANOVA.
- `kruskal_effsize()`: Compute the effect size for Kruskal-Wallis test as the eta squared based on the H-statistic.
- `friedman_effsize()`: Compute the effect size of Friedman test using the Kendall's W value.
- `cramer_v()`: Compute Cramer's V, which measures the strength of the association between categorical variables.
### Correlation analysis
**Computing correlation**:
- `cor_test()`: correlation test between two or more variables using Pearson, Spearman or Kendall methods.
- `cor_mat()`: compute correlation matrix with p-values. Returns a data frame containing the matrix of the correlation coefficients. The output has an attribute named "pvalue", which contains the matrix of the correlation test p-values.
- `cor_get_pval()`: extract a correlation matrix p-values from an object of class `cor_mat()`.
- `cor_pmat()`: compute the correlation matrix, but returns only the p-values of the correlation tests.
- `as_cor_mat()`: convert a `cor_test` object into a correlation matrix format.
**Reshaping correlation matrix**:
- `cor_reorder()`: reorder correlation matrix, according to the coefficients, using the hierarchical clustering method.
- `cor_gather()`: takes a correlation matrix and collapses (or melt) it into long format data frame (paired list)
- `cor_spread()`: spread a long correlation data frame into wide format (correlation matrix).
**Subsetting correlation matrix**:
- `cor_select()`: subset a correlation matrix by selecting variables of interest.
- `pull_triangle()`, `pull_upper_triangle()`, `pull_lower_triangle()`: pull upper and lower triangular parts of a (correlation) matrix.
- `replace_triangle()`, `replace_upper_triangle()`, `replace_lower_triangle()`: replace upper and lower triangular parts of a (correlation) matrix.
**Visualizing correlation matrix**:
- `cor_as_symbols()`: replaces the correlation coefficients, in a matrix, by symbols according to the value.
- `cor_plot()`: visualize correlation matrix using base plot.
- `cor_mark_significant()`: add significance levels to a correlation matrix.
### Adjusting p-values, formatting and adding significance symbols
- `adjust_pvalue()`: add an adjusted p-values column to a data frame containing statistical test p-values
- `add_significance()`: add a column containing the p-value significance level
- `p_round(), p_format(), p_mark_significant()`: rounding and formatting p-values
### Extract information from statistical tests
Extract information from statistical test results. Useful for labelling plots with test outputs.
- `get_pwc_label()`: Extract label from pairwise comparisons.
- `get_test_label()`: Extract label from statistical tests.
- `create_test_label()`: Create labels from user specified test results.
### Data manipulation helper functions
These functions are internally used in the `rstatix` and in the `ggpubr` R package to make it easy to program with tidyverse packages using non standard evaluation.
- `df_select()`, `df_arrange()`, `df_group_by()`: wrappers arround dplyr functions for supporting standard and non standard evaluations.
- `df_nest_by()`: Nest a tibble data frame using grouping specification. Supports standard and non standard evaluations.
- `df_split_by()`: Split a data frame by groups into subsets or data panel. Very similar to the function `df_nest_by()`. The only difference is that, it adds labels to each data subset. Labels are the combination of the grouping variable levels.
- `df_unite()`: Unite multiple columns into one.
- `df_unite_factors()`: Unite factor columns. First, order factors levels then merge them into one column. The output column is a factor.
- `df_label_both()`, `df_label_value()`: functions to label data frames rows by by one or multiple grouping variables.
- `df_get_var_names()`: Returns user specified variable names. Supports standard and non standard evaluation.
### Others
- `doo()`: alternative to dplyr::do for doing anything. Technically it uses `nest(...) %>% mutate(...) %>% map(...)` to apply arbitrary computation to a grouped data frame.
- `sample_n_by()`: sample n rows by group from a table
- `convert_as_factor(), set_ref_level(), reorder_levels()`: Provides pipe-friendly functions to convert simultaneously multiple variables into a factor variable.
- `make_clean_names()`: Pipe-friendly function to make syntactically valid column names (for input data frame) or names (for input vector).
- `counts_to_cases()`: converts a contingency table or a data frame of counts into a data frame of individual observations.
## Installation and loading
- Install the latest developmental version from [GitHub](https://github.com/kassambara/rstatix) as follow:
```{r, eval = FALSE}
if(!require(devtools)) install.packages("devtools")
devtools::install_github("kassambara/rstatix")
```
- Or install from [CRAN](https://cran.r-project.org/package=ggpubr) as follow:
```{r, eval = FALSE}
install.packages("rstatix")
```
- Loading packages
```{r}
library(rstatix)
library(ggpubr) # For easy data-visualization
```
## Descriptive statistics
```{r}
# Summary statistics of some selected variables
#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
iris %>%
get_summary_stats(Sepal.Length, Sepal.Width, type = "common")
# Whole data frame
#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
iris %>% get_summary_stats(type = "common")
# Grouped data
#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
iris %>%
group_by(Species) %>%
get_summary_stats(Sepal.Length, type = "mean_sd")
```
## Comparing two means
To compare the means of two groups, you can use either the function `t_test()` (parametric) or `wilcox_test()` (non-parametric). In the following example the t-test will be illustrated.
### Data
Preparing the demo data set:
```{r}
df <- ToothGrowth
df$dose <- as.factor(df$dose)
head(df)
```
### One-sample test
The one-sample test is used to compare the mean of one sample to a known standard (or theoretical / hypothetical) mean (`mu`).
```{r}
df %>% t_test(len ~ 1, mu = 0)
# One-sample test of each dose level
df %>%
group_by(dose) %>%
t_test(len ~ 1, mu = 0)
```
### Compare two independent groups
- Create a simple box plot with p-values:
```{r unpaired-two-sample-t-test, fig.width=3.5, fig.height=4}
# T-test
stat.test <- df %>%
t_test(len ~ supp, paired = FALSE)
stat.test
# Create a box plot
p <- ggboxplot(
df, x = "supp", y = "len",
color = "supp", palette = "jco", ylim = c(0,40)
)
# Add the p-value manually
p + stat_pvalue_manual(stat.test, label = "p", y.position = 35)
```
- Customize labels using [glue expression](https://github.com/tidyverse/glue):
```{r custoize-p-value-labels, fig.width=3.5, fig.height=4}
p +stat_pvalue_manual(stat.test, label = "T-test, p = {p}",
y.position = 36)
```
- Grouped data: compare supp levels after grouping the data by "dose"
```{r grouped-two-sample-t-test, fig.width=6, fig.height=4}
# Statistical test
stat.test <- df %>%
group_by(dose) %>%
t_test(len ~ supp) %>%
adjust_pvalue() %>%
add_significance("p.adj")
stat.test
# Visualization
ggboxplot(
df, x = "supp", y = "len",
color = "supp", palette = "jco", facet.by = "dose",
ylim = c(0, 40)
) +
stat_pvalue_manual(stat.test, label = "p.adj", y.position = 35)
```
### Compare paired samples
```{r paired-t-test, fig.width=3.5, fig.height=4}
# T-test
stat.test <- df %>%
t_test(len ~ supp, paired = TRUE)
stat.test
# Box plot
p <- ggpaired(
df, x = "supp", y = "len", color = "supp", palette = "jco",
line.color = "gray", line.size = 0.4, ylim = c(0, 40)
)
p + stat_pvalue_manual(stat.test, label = "p", y.position = 36)
```
### Multiple pairwise comparisons
- Pairwise comparisons: if the grouping variable contains more than two categories, a pairwise comparison is automatically performed.
```{r pairwise-comparisons, fig.width=3.5, fig.height=3}
# Pairwise t-test
pairwise.test <- df %>% t_test(len ~ dose)
pairwise.test
# Box plot
ggboxplot(df, x = "dose", y = "len")+
stat_pvalue_manual(
pairwise.test, label = "p.adj",
y.position = c(29, 35, 39)
)
```
- Multiple pairwise comparisons against reference group: each level is compared to the ref group
```{r comaprison-against-reference-group, fig.width=3.5, fig.height=3}
# Comparison against reference group
#::::::::::::::::::::::::::::::::::::::::
# T-test: each level is compared to the ref group
stat.test <- df %>% t_test(len ~ dose, ref.group = "0.5")
stat.test
# Box plot
ggboxplot(df, x = "dose", y = "len", ylim = c(0, 40)) +
stat_pvalue_manual(
stat.test, label = "p.adj.signif",
y.position = c(29, 35)
)
# Remove bracket
ggboxplot(df, x = "dose", y = "len", ylim = c(0, 40)) +
stat_pvalue_manual(
stat.test, label = "p.adj.signif",
y.position = c(29, 35),
remove.bracket = TRUE
)
```
- Multiple pairwise comparisons against all (base-mean): Comparison of each group against base-mean.
```{r comparison-against-base-mean, fig.width=3.5, fig.height=3}
# T-test
stat.test <- df %>% t_test(len ~ dose, ref.group = "all")
stat.test
# Box plot with horizontal mean line
ggboxplot(df, x = "dose", y = "len") +
stat_pvalue_manual(
stat.test, label = "p.adj.signif",
y.position = 35,
remove.bracket = TRUE
) +
geom_hline(yintercept = mean(df$len), linetype = 2)
```
## ANOVA test
```{r}
# One-way ANOVA test
#:::::::::::::::::::::::::::::::::::::::::
df %>% anova_test(len ~ dose)
# Two-way ANOVA test
#:::::::::::::::::::::::::::::::::::::::::
df %>% anova_test(len ~ supp*dose)
# Two-way repeated measures ANOVA
#:::::::::::::::::::::::::::::::::::::::::
df$id <- rep(1:10, 6) # Add individuals id
# Use formula
# df %>% anova_test(len ~ supp*dose + Error(id/(supp*dose)))
# or use character vector
df %>% anova_test(dv = len, wid = id, within = c(supp, dose))
# Use model as arguments
#:::::::::::::::::::::::::::::::::::::::::
.my.model <- lm(yield ~ block + N*P*K, npk)
anova_test(.my.model)
```
## Correlation tests
```{r}
# Data preparation
mydata <- mtcars %>%
select(mpg, disp, hp, drat, wt, qsec)
head(mydata, 3)
# Correlation test between two variables
mydata %>% cor_test(wt, mpg, method = "pearson")
# Correlation of one variable against all
mydata %>% cor_test(mpg, method = "pearson")
# Pairwise correlation test between all variables
mydata %>% cor_test(method = "pearson")
```
## Correlation matrix
```{r, fig.width=4, fig.height=4}
# Compute correlation matrix
#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
cor.mat <- mydata %>% cor_mat()
cor.mat
# Show the significance levels
#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
cor.mat %>% cor_get_pval()
# Replacing correlation coefficients by symbols
#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
cor.mat %>%
cor_as_symbols() %>%
pull_lower_triangle()
# Mark significant correlations
#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
cor.mat %>%
cor_mark_significant()
# Draw correlogram using R base plot
#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
cor.mat %>%
cor_reorder() %>%
pull_lower_triangle() %>%
cor_plot()
```
## Related articles
- [How to Add P-Values onto Basic GGPLOTS](https://www.datanovia.com/en/blog/how-to-add-p-values-onto-basic-ggplots/)
- [How to Add Adjusted P-values to a Multi-Panel GGPlot](https://www.datanovia.com/en/blog/ggpubr-how-to-add-adjusted-p-values-to-a-multi-panel-ggplot/)
- [How to Add P-values to GGPLOT Facets](https://www.datanovia.com/en/blog/how-to-add-p-values-to-ggplot-facets/)
- [How to Add P-Values Generated Elsewhere to a GGPLOT](https://www.datanovia.com/en/blog/ggpubr-how-to-add-p-values-generated-elsewhere-to-a-ggplot/)
- [How to Add P-Values onto a Grouped GGPLOT using the GGPUBR R Package](https://www.datanovia.com/en/blog/how-to-add-p-values-onto-a-grouped-ggplot-using-the-ggpubr-r-package/)
- [How to Create Stacked Bar Plots with Error Bars and P-values](https://www.datanovia.com/en/blog/how-to-create-stacked-bar-plots-with-error-bars-and-p-values/)
- [How to Add P-Values onto Horizontal GGPLOTS](https://www.datanovia.com/en/blog/how-to-add-p-values-onto-horizontal-ggplots/)
- [Add P-values and Significance Levels to ggplots](http://www.sthda.com/english/articles/24-ggpubr-publication-ready-plots/76-add-p-values-and-significance-levels-to-ggplots/)
- [Comparing Means of Two Groups in R](https://www.datanovia.com/en/courses/comparing-means-of-two-groups-in-r/)
- [T-test in R](https://www.datanovia.com/en/lessons/t-test-in-r/)
- [Wilcoxon Test in R](https://www.datanovia.com/en/lessons/wilcoxon-test-in-r/)
- [Sign Test in R](https://www.datanovia.com/en/lessons/sign-test-in-r/)
- [Comparing Multiple Means in R](https://www.datanovia.com/en/courses/comparing-multiple-means-in-r/)
- [ANOVA in R](https://www.datanovia.com/en/lessons/anova-in-r/)
- [Repeated Measures ANOVA in R](https://www.datanovia.com/en/lessons/repeated-measures-anova-in-r/)
- [Mixed ANOVA in R](https://www.datanovia.com/en/lessons/mixed-anova-in-r/)
- [ANCOVA in R](https://www.datanovia.com/en/lessons/ancova-in-r/)
- [One-Way MANOVA in R](https://www.datanovia.com/en/lessons/one-way-manova-in-r/)
- [Kruskal-Wallis Test in R](https://www.datanovia.com/en/lessons/kruskal-wallis-test-in-r/)
- [Friedman Test in R](https://www.datanovia.com/en/lessons/friedman-test-in-r/)