-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrockmath.py
297 lines (297 loc) · 9.86 KB
/
rockmath.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
#Pi constant
the_pi = 3.1415926535897932
the_e = 2.7182818284590452
the_tau = the_pi * 2
#Convert degrees to radians
def DegToRad(the_degrees):
return the_degrees * the_tau / 360
#Convert radians to degrees
def RadToDeg(the_radian):
return the_radian * 360 / the_tau
#Factorial: n!
def Factorial(the_number):
the_zero = 0
if the_number == the_zero:
return 1
if the_number < the_zero:
return -1
the_iterator = 1
the_answer = 1
while the_iterator <= the_number:
the_answer = the_iterator * the_answer
the_iterator += 1
return the_answer
#Abs value
def Absolute_Value(the_number):
if the_number < 0:
the_number = the_number * -1
return the_number
return the_number
#Is-close
def Is_Close(the_a, the_b):
the_relativetolerance = 0.0000000001 #to be changed to an optional argument
the_absolutetolerance = 0 #to be changed to an optional argument
the_largest = Absolute_Value(the_a)
if Absolute_Value(the_b) > the_largest:
the_largest = Absolute_Value(the_b)
the_scalefactor = the_relativetolerance * the_largest
if the_absolutetolerance > the_scalefactor:
the_threshold = the_absolutetolerance
else:
the_threshold = the_scalefactor
the_difference = the_a - the_b
the_difference = Absolute_Value(the_difference)
if the_difference <= the_threshold:
return True
else:
return False
#Mod: a % m
def Mod(the_number, the_modulo):
if the_number > 0:
while the_number >= the_modulo:
the_number = the_number - the_modulo
return the_number
if the_number < 0:
while the_number < 0:
the_number = the_number + the_modulo
return the_number
return the_number
#Gcd
def Gcd(the_x, the_y):
if Mod(the_x, 1) != 0 or Mod(the_y, 1) != 0:
return "Error: the input must be two integer numbers"
the_x = Absolute_Value(the_x)
the_y = Absolute_Value(the_y)
if the_x == 0:
return the_y
if the_y == 0:
return the_x
while the_x != the_y:
if the_x > the_y:
the_x = the_x - the_y
else:
the_y = the_y - the_x
return the_x
#Floor
def Floor(the_number):
the_number = the_number - Mod(the_number, 1)
return the_number
#Ceil
def Ceil(the_number):
the_number = -1 * the_number
the_number = -1 * Floor(the_number)
return the_number
#Power: a^x
def Power(the_base, the_exponent):
if the_exponent < 0:
the_newexponent = -1 * the_exponent
return 1 / Power(the_base, the_newexponent)
if the_exponent == 0:
return 1
if the_base == 0:
return 0
if Mod(the_exponent, 1) == 0:
return PowerIntegerExponent(the_base, the_exponent)
else:
return PowerRealExponent(the_base, the_exponent)
#PowerIntegerExponent: should rather be named PowerPositiveIntegerExponent
def PowerIntegerExponent(the_base, the_exponent):
the_iterator = 0
the_answer = 1
while the_iterator < the_exponent: #Probably can also use divide and conquer exponentiation -> e^n + e^m + ....
the_answer = the_base * the_answer
the_iterator += 1
return the_answer
#PowerRealExponent
def PowerRealExponent(the_base, the_exponent):
the_argument = the_exponent * LN(the_base)
return Exp(the_argument)
#Exp
def Exp(the_x):
the_prevanswer = 666
the_nextanswer = 1
the_iterator = 1
while the_iterator < 2000 and Is_Close(the_prevanswer, the_nextanswer) == False:
the_prevanswer = the_nextanswer
the_numerator = Power(the_x, the_iterator)
the_denominator = Factorial(the_iterator)
the_term = the_numerator / the_denominator
the_nextanswer = the_prevanswer + the_term
the_iterator += 1
return the_nextanswer
#Natural Logarithm, always base e
def LN(the_number):
the_top = the_number - 1
the_bottom = the_number + 1
the_x = the_top / the_bottom
the_iterator = 1
the_answer = 0
while the_iterator < 10: #get reasonable starting point for Halley's method
the_term = Power(the_x, the_iterator)
the_term = the_term / the_iterator
the_answer = the_answer + the_term
the_iterator += 1
the_iterator += 1
the_nextanswer = the_answer * 2 #end power expansion, start Halley's cubic convergence
the_prevanswer = 666
the_iterator = 0
while the_iterator < 2000 and Is_Close(the_prevanswer, the_nextanswer) == False:
the_prevanswer = the_nextanswer
the_numerator = the_number - Exp(the_prevanswer)
the_denominator = the_number + Exp(the_prevanswer)
the_term = 2 * the_numerator / the_denominator
the_nextanswer = the_prevanswer + the_term
the_iterator += 1
return the_nextanswer
#Log with number and base
def LOG(the_number, the_base):
the_top = LN(the_number)
the_bottom = LN(the_base)
return the_top / the_bottom
#Square Root Function
def Square_Root(the_number):
the_prevanswer = 666
the_nextanswer = 0.5 * the_number
the_iterator = 1
the_number = 1.0 * the_number
while the_iterator < 2000 and Is_Close(the_prevanswer, the_nextanswer) == False:
the_prevanswer = the_nextanswer
the_term = the_number / the_prevanswer + the_prevanswer
the_nextanswer = 0.5 * the_term
the_iterator += 1
return the_nextanswer
#Sine
def Sine(the_radian):
the_iterator = 1
the_prevanswer = 666
the_nextanswer = 0
the_sign = 1
while the_iterator < 2000 and Is_Close(the_prevanswer, the_nextanswer) == False:
the_prevanswer = the_nextanswer
the_term = Power(the_radian, the_iterator) / Factorial(the_iterator)
the_term = the_term * the_sign
the_nextanswer = the_prevanswer + the_term
the_iterator += 1
the_iterator += 1
the_sign = the_sign * -1
return the_nextanswer
#Cos
def Cos(the_radian):
the_iterator = 0
the_prevanswer = 666
the_nextanswer = 0
the_sign = 1
while the_iterator < 2000 and Is_Close(the_prevanswer, the_nextanswer) == False:
the_prevanswer = the_nextanswer
the_term = Power(the_radian, the_iterator) / Factorial(the_iterator)
the_term = the_term * the_sign
the_nextanswer = the_prevanswer + the_term
the_iterator += 1
the_iterator += 1
the_sign = the_sign * -1
return the_nextanswer
#Tan
def Tan(the_radian):
the_numerator = Sine(the_radian)
the_denominator = Cos(the_radian)
return the_numerator / the_denominator
#Arctan
def Arctan(the_number):
the_iterator = 1
the_prevanswer = 666
the_nextanswer = 0
the_sign = 1
while the_iterator < 2000 and Is_Close(the_prevanswer, the_nextanswer) == False:
the_prevanswer = the_nextanswer
the_term = Power(the_number, the_iterator) / the_iterator
the_term = the_term * the_sign
the_nextanswer = the_prevanswer + the_term
the_iterator += 1
the_iterator += 1
the_sign = the_sign * -1
return the_nextanswer
#Arcsin
def Arcsin(the_number):
the_iterator = 0
the_prevanswer = 666
the_nextanswer = 0
while the_iterator < 2000 and Is_Close(the_prevanswer, the_nextanswer) == False:
the_prevanswer = the_nextanswer
the_placeholder = 2 * the_iterator
the_numerator = Factorial(the_placeholder)
the_exponent = 2 * the_iterator + 1
the_numerator = the_numerator * Power(the_number, the_exponent)
the_firstdenominator = Power(4, the_iterator)
the_placeholder = Factorial(the_iterator)
the_seconddenominator = Power(the_placeholder, 2)
the_thirddenominator = 2 * the_iterator + 1
the_denominator = the_firstdenominator * the_seconddenominator * the_thirddenominator
the_term = the_numerator / the_denominator
the_nextanswer = the_prevanswer + the_term
the_iterator += 1
return the_nextanswer
#Arccos
def Arccos(the_number):
the_answer = the_pi / 2
the_answer = the_answer - Arcsin(the_number)
return the_answer
#Sinh
def Sinh(the_number):
the_iterator = 1
the_prevanswer = 666
the_nextanswer = 0
while the_iterator < 2000 and Is_Close(the_prevanswer, the_nextanswer) == False:
the_prevanswer = the_nextanswer
the_term = Power(the_number, the_iterator) / Factorial(the_iterator)
the_nextanswer = the_prevanswer + the_term
the_iterator += 1
the_iterator += 1
return the_nextanswer
#Cosh
def Cosh(the_number):
the_iterator = 0
the_prevanswer = 666
the_nextanswer = 0
while the_iterator < 2000 and Is_Close(the_prevanswer, the_nextanswer) == False:
the_prevanswer = the_nextanswer
the_term = Power(the_number, the_iterator) / Factorial(the_iterator)
the_nextanswer = the_prevanswer + the_term
the_iterator += 1
the_iterator += 1
return the_nextanswer
#Tanh
def Tanh(the_number):
the_numerator = Sinh(the_number)
the_denominator = Cosh(the_number)
return the_numerator / the_denominator
#Arcsinh
def Arcsinh(the_number):
the_term = Power(the_number, 2)
the_term = the_term + 1
the_argument = the_number + Square_Root(the_term)
return LN(the_argument)
#Arccosh
def Arccosh(the_number):
the_term = Power(the_number, 2)
the_term = the_term - 1
the_argument = the_number + Square_Root(the_term)
return LN(the_argument)
#Arctanh
def Arctanh(the_number):
the_numerator = 1 + the_number
the_denominator = 1 - the_number
the_argument = the_numerator / the_denominator
return LN(the_argument) / 2
#Get binary from decimal
def DecToBin(the_number):
if the_number <= 1:
if the_number == 0:
return "0"
return "1"
the_temp = Mod(the_number, 2)
if the_temp == 0:
the_temp = "0"
else:
the_temp = "1"
the_number = the_number / 2
return the_temp + DecToBin(the_number) #doesn't work until we have integer division