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Unsupervised machine learning is one of the main techniques in artificial intelligence. Quantum
computers offer opportunities to speed up such machine learning techniques, where the number
of input data elements is extremely large. Here, we propose a realization of quantum assisted
unsupervised data clustering using the self-organizing feature map artificial neural networks. We
make a proof-of-concept realization of one of the central components of the approach on the IBM Q
Experience and show that it allows us to reduce number of calculations in a number of clusters. We
compare the results with the classical algorithm on a toy example of unsupervised text clustering.

I. INTRODUCTION

The combination of big data and artificial intelligence
— dubbed the fourth industrial revolution — has pro-
foundly affected the modern economy in a plethora of
different ways from robotics to agriculture [1–5]. Con-
temporary artificial intelligence methods based on neu-
ral networks also have the potential to enhance the role
of novel analytical methods in science and engineering
[6–8]. Paradoxically, the exact mechanism of why neural
networks are so powerful remain unknown (in many cases
it is regarded as a black box). It has been speculated
that limits to the neural network approach based on the
computational power of von Neumann architecture are
being approached, and improvements appear only due to
heuristic escalation of complexity [9–11].

In particular, the self-organizing feature map (SOFM)
[12–14], is a type of artificial neural network (ANN) that
is trained in an unsupervised manner. SOFMs are used in
many areas [15–22] and in comparison with many other
artificial neural networks they apply competitive learn-
ing and preserve the topological properties of the input

∗ Email address:pyrkov@icp.ac.ru

space [23]. The SOFMs with a small number of nodes are
similar to the K-means algorithm but for larger SOFMs
they represent data in a fundamentally topological way
that allows one to do dimensionality reduction. Once
it is trained, the map can classify a vector from the in-
put space by finding the node with the smallest distance
metric.

Meanwhile, there has been much interest recently
in applying quantum computing techniques to machine
learning [24–27]. The main focus of early works in quan-
tum machine learning (QML) was on the use of quan-
tum computers to perform basic linear algebra subrou-
tines with a quantum speedup (such as Fourier trans-
form and solving systems of linear equations [28–30]) by
utilizing quantum phenomena such as quantum entan-
glement and quantum superposition [25, 26]. Quantum
versions were developed for linear regression, principal
component analysis, support vector machine, K-means
algorithm and others [31–35]. More recently, there has
been attention on developing quantum neural networks
[36–38]. The interest in quantum neural networks was
inspired by progress in experimental quantum comput-
ing when it became possible to use parametrized quan-
tum circuits, where the parameters behave much like the
weights of a neural network [39]. In particular, quantum
algorithms for training and evaluating feedforward neural
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FIG. 1. Schematic illustration of the clustering problem con-
sidered in this paper. Blue dots represent clusters and red
dots are data points. The training process moves clusters to
fit the data points. Note that there are fewer clusters than
data points, which is the essence of dimensionality reduction,
and is what permits the model to generalize the data.

networks was developed, which are one of the most usable
neural network models [40, 41]. Recent results connecting
the classical Bayesian approach to deep learning allowed
for the development of a new algorithm for Bayesian deep
learning on quantum computers [42]. The quantum mod-
els for convolutional neural networks, which may be suit-
able for the problems of learning of quantum states were
also proposed [43, 44]. Quantum classification, tested
on the MNIST dataset, via slow feature analysis based
on the use of quantum Frobenius distance was proposed
[45]. Sublinear quantum algorithms for training linear
and kernel-based classifiers were designed [46]. Further-
more, continuous-variable quantum neural networks [47],
quantum autoencoders [48], quantum approaches for re-
inforcement learning [49–51] and some other [52–59] were
developed. Currently, it is believed that implementation
of quantum neural networks can be the main test bed to
achieve practical quantum supremacy on noisy interme-
diate scale quantum (NISQ) devices.

In this paper, we analyze a hybrid quantum assisted
SOFM (QASOFM) and apply it to the data clustering
problem in an unsupervised manner on a toy example of
clustering paper abstracts. We implement the quantum
assisted SOFM in such a way that it becomes possible to
use the Hamming distance as a distance metric for the
training and to reduce the number of distance calcula-
tions in the number of clusters. We propose an optimized
circuit for realizing the Hamming distance on a quantum
machine. We then apply it to a toy example of data for
clustering paper abstracts and give a proof-of-concept re-
alization of the quantum assisted SOFM on the IBM Q
experience quantum computer [60] and compare it to the
classical case.

II. THE QUANTUM ASSISTED
SELF-ORGANIZING FEATURE MAP (SOFM)

A. The classical algorithm

The SOFM is one of the most widely-used unsuper-
vised learning methods used in various areas of modern
science. It was first proposed by Kohonen as a self-
organizing unsupervised learning algorithm which pro-
duces feature maps similar to those occurring in the brain
[61]. The SOFM algorithm operates with a set of input
objects, each represented by a N -dimensional vector, and
maps them onto nodes of a two-dimensional grid.

The input dimensions are associated with the features,
and the nodes in the grid (called cluster vectors) are as-
signed the N -dimensional vectors. The components of
these vectors are usually called weights. Initially the
weight components are chosen randomly. We then can
train our SOFM adjusting the components through the
learning process which occur in the two basic procedures
of selecting a winning cluster vector and updating its
weights (Fig. I). More specifically, they consist of four
step process: 1. selecting an input vector randomly from
the set of all input vectors; 2. finding a cluster vector
which is closest to the input vector; 3. adjusting the
weights of the winning node in such a way that it be-
comes even closer to the input vector; 4. repeating this
process for many iterations until it converges.

After the winning cluster vector is selected, the weights
of the vector are adjusted according to

~wnew = ~wold + α (~x− ~wold) (1)

The above expression can be interpreted according to:
if a component of the input vector is greater than the
corresponding weight, increase the weight by a small
amount; if the input component is smaller than the
weight, decrease the weight by a small amount. The
larger the difference between the input component and
the weight component, the larger the increment (decre-
ment). Intuitively, this procedure can be geometrically
interpreted as iteratively moving the cluster vectors in
space one at a time in a way that ensures each move is
following the current trends inferred from their distances
to the input objects. A visualisation of this process is
shown in Fig. I.

Usually the winning cluster vector is selected based on
the Euclidean distance between an input vector and the
cluster vectors. In our approach, we use the Hamming
distance instead of the Euclidean distance to select the
winning cluster vector. It allows us to use a simpler en-
coding of the classical information into the quantum state
and use an effective procedure for the calculation of the
Hamming distance on the quantum machine, such as to
reduce the number of calculations in number of cluster
vectors in comparison to the classical case.
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FIG. 2. Quantum circuit for the quantum parallelized Ham-
ming distance calculation between all samples and clusters.
First, Hadamard gates are applied in order to obtain a super-
position of the sample and cluster registers. Second, we en-
coded information about pairwise different qubits in a quan-
tum state of the sample register with applying the CNOT
gates. Third, Hamming distance values are encoded in the
amplitudes of superposition with the control phase rotation
and Hadamard gates. Finally, a quantum state of the sample
register returned to the initial basis for information retrieval.

FIG. 3. Hamming distance matrix between two data sets of
binary vectors. Values of distance that are less than the me-
dian distance value are marked black. Classical simulation of
the quantum circuit shows perfect agreement to theoretical
calculations and presented on the left figure. Result obtained
on the IBM Q Experience “ibmq 16 melbourne” backend is
shown on the right figure. We can see good agreement be-
tween the distance matrices calculated classically and on the
IBM Q Experience.

B. Optimized quantum scheme for Hamming
distance calculation

We now introduce an optimized algorithm for calcu-
lating the matrix of Hamming distances [62] between a
sample vector and all cluster vectors, making use of quan-
tum parallelism. This allows for a simple encoding of the
classical information into a quantum register.

The overall procedure involves two registers of n qubits
each, denoted |X〉 and |Y 〉, along with a single auxiliary
qubit |a〉. During the whole process, the |Y 〉 register is
used to store the cluster states. At the beginning and
end of the procedure the |X〉 register stores the input
vectors. Meanwhile, during the procedure it stores the
differences between input vectors and cluster states.

Let us assume we have k input vectors and l cluster
states. The ith input vector and jth cluster vector are

respectively denoted as |xi〉, |yj〉. The registers |X〉 and
|Y 〉 are initialized to store the input vectors and cluster
vectors according to

|X〉 =
1√
k

k∑
i=1

|xi〉 , (2)

|Y 〉 =
1√
l

l∑
j=1

|yj〉 . (3)

The two registers along with the auxiliary qubit comprise
the initial state of the quantum computer according to

|ψ0〉 = |X〉 |Y 〉 |a〉 (4)

where |a〉 is an auxiliary qubit in the state |0〉 initially.
Given this initial state we may begin the processing of

the problem. We start by applying a CNOT gate between
|X〉 and |Y 〉

|ψ1〉 = CNOT(Y,X)|ψ0〉

=
1√
kl

k∑
i,j=1

|d(1)ij , . . . , d
(n)
ij 〉|y

(1)
j , . . . , y

(n)
j 〉|0〉 (5)

where dαij = CNOT(yαi , x
α
j ), α = 1 . . . n, and i, j are the

qubit indexes in the registers. At this stage of the com-
putation the |X〉 no longer stores the input vectors, in-
stead it stores the information about pairwise different
qubits between the input vector {X} and cluster vector
{Y }. Next, for each pair {X} and {Y }, the accumulated
information of all the differences is projected onto the
amplitude of the superposed state. This is achieved by
applying the Hadamard gate on auxiliary qubit, followed
by a controlled phase gate on |Xa〉 defined as

R(φ) =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e−iφ

 . φ =
π

n
(6)

Finally, another Hadamard gate is applied.
After the first Hadamard on the ancilla qubit the state

is

|ψ2〉 = Ha |ψ1〉 =
1√
kl

k∑
i,j=1

∣∣∣d(1)ij , . . . , d(n)ij

〉 ∣∣∣y(1)j , . . . , y
(n)
j

〉 (|0〉+ |1〉)√
2

.

(7)
Applying the controlled phase gate the state then be-
comes:

|ψ3〉 = R(X,a)

(π
n

)
|ψ2〉

=
1√
2kl

k∑
i,j=1

∣∣∣d(1)ij , . . . , d(n)ij

〉 ∣∣∣y(1)j , . . . , y
(n)
j

〉
|0〉

+
1√
2kl

k∑
i,j=1

exp

(
−iπ
n

n∑
l=1

d
(l)
ij

)∣∣∣d(1)ij , . . . , d(n)ij

〉
×
∣∣∣y(1)j , . . . , y

(n)
j

〉
|1〉 (8)
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Applying another Hadamard on the ancilla qubit we ob-
tain

|ψ4〉 =
1√
kl

k∑
i,j=1

exp

(
−iπ
2n

n∑
l=1

d
(l)
ij

)

×

[
cos

(
π

2n

n∑
l=1

d
(l)
ij

)∣∣∣d(1)ij , . . . , d(n)ij

〉 ∣∣∣y(1)j , . . . , y
(n)
j

〉
|0〉

+ i sin

(
π

2n

n∑
l=1

d
(l)
ij

)∣∣∣d(1)ij , . . . , d(n)ij

〉 ∣∣∣y(1)j , . . . , y
(n)
j

〉
|1〉

]
.

(9)

This completes the step for projecting differences be-
tween pairs of {X} and {Y } onto the amplitude of the
auxiliary qubit. The process is done in the x-basis,
achieved by the surrounding Hadamard gates. There
are two possible measurement outcomes of the auxiliary
qubit. Each pair of {X} and {Y } forms a subspace of
the Hilbert space, the controlled phase gate ensures to
change amplitudes of those outcomes within this sub-
space depending on how different the spin configurations
between {X} and {Y } are.

At this stage, the information regarding the differences
between pairs of {X} and {Y } is no longer relevant, thus
we return to our initial basis for register |X〉 by applying
pairwise CNOT gates:

|ψf 〉 = CNOT(Y,X) |ψ4〉

=
1√
kl

k∑
i,j=1

exp

(
−iπ
2n

n∑
l=1

d
(l)
ij

)[
cos

(
π

2n

n∑
l=1

d
(l)
ij

)
|Xi〉 |Yj〉 |0〉

+ i sin

(
π

2n

n∑
l=1

d
(l)
ij

)
|Xi〉 |Yj〉 |1〉

]
. (10)

This makes {X} store the input vectors again, as in the
initial step. It however preserves the amplitudes of the
auxiliary qubit which are proportional to how different
each pairs of {X} and {Y } are.

We thus have the Hamming distances encoded into the
amplitudes of the final state. From the statistics of the
measurement outcomes, the distance matrix between two
data sets of binary vectors can be obtained (Fig. II B). In
this case, the biggest amplitude of the measurement re-
sult coincides with the smallest Hamming distance when
the measurement result of the ancilla qubit is 0. If the
ancilla qubit is 1, there is an inverse relationship with the
measurement result.

Measuring the Hamming distance of a particular pair
of input vectors |Xi〉 and cluster vector |Yj〉 consists of
extracting the relevant amplitude from the subspace that
those states form, this can be done using the following
projection operator

Πi,j = |Xi〉〈Xi| ⊗ |Xi〉〈Yj | ⊗ I. (11)

Using the above projection operator, the subspace of the
Hilbert space formed by a particular pair of input and

FIG. 4. (a) Representation of the data set of abstracts with
the bag-of-words model is shown. Each abstract is represented
by a binary vector with 9 elements, corresponding to the 9
words on the horizontal axis. The samples are sorted into
groups (QML, MED, BIO) with 3 papers for each tag, for a
total of 9 paper. (b) The Hamming distance between each
vectorized abstract is shown as a number in the matrix.

cluster vectors can be traced out as

ρi,j = Tr1,...,2n(Πi,j |ψf 〉〈ψf |Πi,j). (12)

From the state the following two amplitudes for the mea-
surement results can be extracted

a0(xi, yj) =
〈0|ρi,j |0〉
Tr(ρi,j)

(13)

a1(xi, yj) =
〈1|ρi,j |1〉
Tr(ρi,j)

. (14)

In order to reduce noise we average the measurement
results over different states of the ancilla qubit, thus the
measured Hamming distance between the input vector
|Xi〉 and cluster vector |Yj〉 is

dHi,j ∝ 1− 1

2
(a0(xi, yj) + (1− a1(xi, yj))). (15)

The Hamming distance measured in this way is bounded
0 ≤ dHi,j ≤ 1, where 0 indicates that xi are yj identical
and 1 means they are completely opposite in terms of
their pairwise binary coordinates.

In comparison with the circuits for Hamming distance
calculations proposed previously [62], our method allows
one to reduce the number of gates in the circuit and re-
construct all distance matrix in parallel and can be im-
plemented with high fidelity. We note that at least for
the 2n one-qubit NOT gates, this depends on the actual
realization of the control phase gate in a quantum regis-
ter at the hardware level.

III. EXPEIRMENTAL DEMONSTRATION OF
QASOFM

We now show experimental results for a proof-of-
concept demonstration of the algorithm introduced in the
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previous section, on a 16-qubit quantum computer pro-
vided by IBM Q Experience. We perform unsupervised
data clustering for three sets of paper abstracts from
three different fields: quantum physics [63–65], medicine
[66–68] and biology [69–71]. Each set consists of three
random papers that focus on one of following topics:
“Quantum Machine Learning” (QML), “Cancer” (MED)
and “Gene Expression” (BIO). Abstracts were vectorized
by the bag-of-words model in order to choose most defin-
ing words in each data set (see Fig. II B). This model
represents text as a multiset “bag” of its words taking
into account only multiplicity of words. Preparing the
bag-of-words we excluded the words that appear only in
one abstract and more than in 4 abstracts and we also
excluded the word “level” from consideration due to the
frequent overlap between the clusters because it gives in-
stabilities for both classical and quantum algorithms. We
restricted our bag-of-word size to 9 of the most frequent
words from the full bags-of-word due to limitations of the
number of qubits. After vectorizing and pre-processing
the data, the clusters are well separated with the Ham-
ming distance. We observe that distances between the
abstracts inside clusters are smaller than distances be-
tween the abstracts from different clusters, showing suc-
cessful self-organization (Fig. II B).

In classical SOFM [12], first a distance calculation be-
tween a a sample vector and all cluster vectors is made,
then the closest cluster vector is shifted towards the sam-
ple vector. The complexity of algorithm, in the sense of
the number of distance calculations, scales as O(LMN),
where N is number of samples, M is number of randomly
sampled cluster vectors, and L is number of the shifts of
cluster vectors. In the QASOFM described in the previ-
ous section, distance calculations are realized on a quan-
tum device (i.e. the IBM Q Experience) with the use of
circuit presented in Fig. II B. This approach allows one
to reduce the number of operations in a number of clus-
ter states with an optimized number of gates that are
possible to realize on quantum computing devices that
are currently available. The circuit realized in such a
manner that calculation of Hamming distance between
the sample vector and all cluster vectors is realized in
one operation. The complexity of the quantum assisted
SOFM then scales as O(LN).

In order to check that our algorithm gives the expected
results we compare it to classical calculations of the dis-
tance matrix on two data sets of binary vectors, as shown
in Fig. II B. We see good agreement between the distance
matrices calculated classically and on the IBM Q Expe-
rience. The theoretical calculations and classical simula-
tions show perfect agreement with each other.

An example of the QASOFM learning process is shown
in Fig. 5. Initially, the cluster vectors were randomly
chosen (see Fig. 5) and the label of sample distribution
is shown for the zeroth epoch in Fig. 5(a). In order to
prepare a superposition of cluster vectors needed for the
calculation of the distance matrix we use the standard
initialization of QISKIT library. Each epoch of the al-

FIG. 5. (a) Initial random binary vectors of cluster vectors
(labeled as C0, C1, C2), for the selected 9 words from the
bag of words model. (b) The result of applying our QASOFM
implemented on the IBM Q Experience “ibmq 16 melbourne”
backend. Vectors mean cluster elements for BIO, MED, QML
groups, for the C0, C1, C2 cluster vectors, respectively. (c)
The evolution of label distribution on each learning epoch.

gorithm requires 9 distance calculations in the quantum
implementation (number of samples in general case) or
27 distance calculations for classical realization (product
of number of samples and number of cluster vectors in
general case). After the distance calculation from each
sample to all cluster vectors at each epoch we label each
sample with the index of the closest cluster vector and
shift the closest cluster vectors to the sample one. The
shift is made by the change of the first binary element
in the cluster vectors different from the sample one. The
evolution of the labels presented on Fig. 5(c). Good
convergence is already observed in the fourth epoch.

IV. DISCUSSIONS

We have developed a quantum assisted SOFM and
showed a proof-of-concept experimental demonstration
that it can be used to solve clustering problems in an un-
supervised manner. The procedure of solving such clus-
tering problem requires calculating the distance many
times in iterative way, which is calculated using a hy-
brid quantum-classical procedure. We introduced an op-
timized circuit for Hamming distance calculations that
can be implemented on currently available quantum com-
puting devices with high fidelity. Our quantum circuit
performs the distance-computing component of a classi-
cal SOFMs algorithm and in this way improve its perfor-
mance. Due to wide use of classical SOFMs in different
areas of modern research and technology, this can give
opportunities for the use of QASOFM in practical appli-
cations in near term, outperforming classical algorithms.
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