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Unsupervised machine learning is one of the main directions in the area of
:::::::::
techniques

::
in artificial

intelligence.
::::::::
Quantum

:::::::::
computers

::::
offer

:::::::::::
opportunities

::
to
::::::

speed
::
up

::::
such

:::::::
machine

:::::::
learning

::::::::::
techniques,

:::::
where

:::
the

:::::::
number

::
of
::::::

input
::::
data

::::::::
elements

::
is

:::::::::
extremely

:::::
large.

:
Here, we propose a realization of

quantum assisted unsupervised data clustering on the basis of artificial neural network called a
::::
using

:::
the self-organizing feature map

:::::::
artificial

::::::
neural

:::::::
networks. We make a proof-of-concept realization of

one of the crucial parts
::::::
central

::::::::::
components

:
of the approach on IBM quantum machine

:::
the

::::
IBM

::
Q

:::::::::
Experience and show that it allows us to reduce number of calculations in a number of clusters. We
compare the results with the classical algorithm on a toy example of unsupervised text clustering.

I. INTRODUCTION

The combination of big data and artificial intelligence
— dubbed the fourth industrial revolution — has pro-
foundly affected the modern economy in a plethora of
different ways from robotics to agriculture [1–5]. Con-
temporary artificial intelligence methods based on neu-
ral networks also have the potential to enhance the role
of novel analytical methods in science and engineering
[6–8]. Paradoxically, the exact mechanism of why neural
networks are so powerful remain unknown (in many cases
it is regarded as a black box). It has been speculated
that limits to the neural network approach based on the
computational power of von Neumann architecture are
being approached, and improvements appear only due to
heuristic escalation of complexity [9–11]. In particularly

::
In

:::::::::
particular, the self-organizing feature map (SOFM)

[12–14], is a type of artificial neural network (ANN) that
is trained in an unsupervised manner. SOFMs are used in
many areas [15–22] and in comparison with many other

∗ Email address:pyrkov@icp.ac.ru

artificial neural networks they apply competitive learn-
ing and preserve the topological properties of the input
space [23]. The SOFMs with a small number of nodes are
similar to the K-means algorithm but for larger SOFMs
they represent data in a fundamentally topological way
that allows one to do dimensionality reduction. Once
it is trained, the map can classify a vector from the in-
put space by finding the node with the smallest distance
metric.

Meanwhile, there has been much interest recently
in applying quantum computing techniques to machine
learning [24–27]. In the early stage, the main focus in
QML

::::
The

::::
main

:::::
focus

:::
of

::::
early

::::::
works

::
in

::::::::
quantum

::::::::
machine

:::::::
learning

:::::::
(QML)

:
was on the use of quantum computers

to perform some basic linear algebra subroutines faster

::::
with

::
a
:::::::::

quantum
::::::::

speedup
:

(such as Fourier transform
and solving systems of linear equations [28–30]) , open
up the possibilities for exponential speed-ups

::
by

:
utiliz-

ing quantum phenomena such as quantum entanglement
and quantum superposition over classical counterparts
[25, 26]and, in the result, quantum

:::::::
[25, 26].

::::::::::
Quantum

versions were developed for linear regression, principal
component analysis, support vector machine, K-means
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algorithm and so on [31–35]. Recently, a number of
shifts occurred and the hottest trend migrated to

:::::
others

::::::
[31–35]

:
.
:::::
More

::::::::
recently,

:::::
there

:::
has

:::::
been

::::::::
attention

:::
on devel-

oping quantum neural networks [36–38]. The shift was
inspired with the

:::::::
interest

::
in

:::::::::
quantum

:::::::
neural

::::::::
networks

:::
was

::::::::
inspired

:::
by progress in experimental quantum com-

puting when it became possible to play around with
:::
use

parametrized quantum circuits, whose
:::::
where

:::
the

:
param-

eters behave much like the weights of a neural network
[39]. In particular, quantum algorithms for training and
evaluating feedforward neural networks ,

:::
was

::::::::::
developed,

:::::
which

:::
are

:
one of the most usable neural network model,

was developed
::::::
models

:
[40, 41]. Recent results connected

:::::::::
connecting

::::
the classical Bayesian approach to deep learn-

ing allowed to develop
::
for

:::
the

::::::::::::
development

::
of a new algo-

rithm for Bayesian deep learning on quantum computers
[42]. The quantum models for convolutional neural net-
works, which may be suitable for the problems of learning
of quantum states were also proposed [43, 44]. Quan-
tum classification, tested on the MNIST dataset, via
Slow Feature Analysis

::::
slow

::::::
feature

::::::::
analysis based on the

use of Quantum Frobenius Distance
::::::::
quantum

:::::::::
Frobenius

:::::::
distance

:
was proposed [45]. Sublinear quantum algo-

rithms for training linear and kernel-based classifiers were
designed [46]. Furthermore, continuous-variable quan-
tum neural networks [47], quantum autoencoders [48],
quantum approaches for reinforcement learning [49–51]
and some other [52–59] were developed. Currently, it
is believed that implementation of quantum neural net-
works can be the main test bed to achieve practical
quantum supremacy on NISQ

::::
noisy

::::::::::::
intermediate

:::::
scale

::::::::
quantum

:::::::
(NISQ)

:
devices.

In this paper, we realize
:::::::
analyze

:
a hybrid quantum as-

sisted SOFM (QASOFM) and apply it to the data clus-
tering problem in an unsupervised manner on a toy ex-
ample of clustering paper abstracts. We implement the
quantum assisted SOFM in such a way that it becomes
possible to use the Hamming distance as a distance met-
ric for the training and to reduce the number of distance
calculations in the number of clusters. We propose an
optimized circuit for realizing the Hamming distance on
a quantum machine. We prepare

::::
then

:::::
apply

::
it
:::

to
:
a toy

example of data for clustering paper abstracts and give
a proof-of-concept realization of the quantum assisted
SOFM on the IBM Q experience quantum computer [60]
and compare it with

::
to

:
the classical case.

II. THE QUANTUM ASSISTED
SELF-ORGANIZING FEATURE MAP (SOFM)

A.
::::
The

::::::::
classical

::::::::::
algorithm

:::
The

:
SOFM is one of the best-known

::::
most

:::::::::::
widely-used

unsupervised learning methods that is widely used in var-
ious areas of modern science. It was first proposed by
Kohonen as a self-organizing unsupervised learning al-
gorithm which produces feature maps similar to those

FIG. 1. Schematic illustration of the clustering problem con-
sidered in this paper. Blue dots represent clusters and red
dots are data points. The training process moves clusters to
fit the data points. Note that there are fewer clusters than
data points

:
, which is the essence of dimensionality reduction,

and is what permits the model to generalize the data.

occurring in the brain [61]. The SOFM algorithm op-
erates with a set of input objects, each represented by
a N -dimensional vector, as input and maps them onto
nodes of a two-dimensional grid.

The input dimensions are associated with features and

:::
the

::::::::
features,

::::
and

::::
the nodes in the grid ,

:
(called cluster

vectors, )
:

are assigned the N -dimensional vectors; the

:
.
:::::

The
:
components of these vectors are usually called

weights. Initially
:::
the

:
weight components are chosen ran-

domly. We then can train our SOFM adjusting the
components through the learning process which can be
oversimplified into

:::::
occur

::
in

::::
the

:
two basic procedures ,

::
of

:
selecting a winning cluster vector and updating its

weights (Fig. I). In more detail
::::
More

:::::::::::
specifically, they

consist of four step process: 1) select 1.
:::::::
selecting

:
an in-

put vector randomly from the set of all input vectors; 2)
find 2.

::::::
finding

:
a cluster vector which is closest to the

input vector; 3) adjust 3.
::::::::
adjusting

:
the weights of the

winning node in such a way that it becomes even closer
to the input vector; 4) repeat this process 4.

::::::::
repeating

:::
this

:::::::
process

:::
for

:
many iterations until it converges.

After the winning cluster vector is selected, the weights
of the vector are adjusted according to

~wnew =~

wold + α (~x− ~wold) .(1)In simple words, this

:::
The

:::::::
above

:
expression can be understood according

tothe following
::::::::::
interpreted

:::::::::
according

::
to: if a component

of the input vector is greater than the corresponding
weight, increase the weight by a small amount; if the in-
put component is smaller than the weight, decrease the
weight by a small amount. The larger the difference be-
tween the input component and the weight component,
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FIG. 2. A quantum
:::::::
Quantum

::
circuit for the

:::::::
quantum

:::::::::
parallelized

:
Hamming distance calculation algorithm between

all samples and clustersat once. First, we apply Hadamard
gates

::
are

:::::::
applied in order to get

:::::
obtain

::
a superposition of the

sample and cluster registers. Second, we encoded information
about pairwise different qubits in a quantum state of the sam-
ple register with applying the CNOT gates. Third, Hamming
distance values are encoded in the amplitudes of superposition
with the control phase rotation and Hadamard gates. Finally,
a quantum state of the sample register returned to the initial
basis for information retrieval.

the larger
::
the

:
increment (decrement). Intuitively, this

procedure can be geometrically interpreted as iteratively
moving the cluster vectors in space one at a time in a way
that ensures each move is following the current trends in-
ferred from their distances to the input objects. A visual-
isation of this process is provided on figure (Fig. I)

:::::
shown

::
in

::::
Fig.

:
I.

Usually the winning cluster vector is selected based on
the Euclidean distance between an input vector and the
cluster vectors. In our approach, we use the Hamming
distance instead of the Euclidean distance to select the
winning cluster vector. It allows us to use a simpler en-
coding of the classical information into the quantum state
and use an effective procedure for the calculation of the
Hamming distance on the quantum machine, such as to
reduce the number of calculations in number of cluster
vectors in comparison to the classical case.

B. Optimized quantum scheme for Hamming
distance calculation

We now introduce an optimized algorithm for calcu-
lating the matrix of Hamming distances [62] between a
sample vector and all cluster vectorsat once

:
,
:::::::
making

:::
use

::
of

::::::::
quantum

::::::::::
parallelism. This allows for a simple encod-

ing of the classical information into a quantum register.
The overall procedure involves two registers of n qubits

each, denoted |X〉 and |Y 〉, along with a single auxiliary
qubit |a〉. During entire processing

:::
the

:::::
whole

:::::::
process, the

|Y 〉
:::::::
register is used to store the cluster states, then at .

:::
At

the beginning and at the end of the processing
::::::::
procedure

the |X〉 register stores the input vectors, while during the
processing .

::::::::::::
Meanwhile,

::::::
during

::::
the

:::::::::
procedure

:
it stores

the differences between input vectors and cluster states.
Now for this demonstration let

:::
Let

:
us assume we have

k input vectors and l cluster states. The ith input vector

FIG. 3. The Hamming distance matrix between two data sets
of binary vectors. Values of distance that

:::
are

:
less than

::
the

median distance value was
::
are

:
marked black. The classical

:::::::
Classical

:
simulation of the quantum circuit shows perfect

agreement to theoretical calculations and presented on the
left figure. Result obtained on IBMQ ”

:::
the

::::
IBM

::
Q

:::::::::
Experience

:
“ibmq 16 melbourne”

:
”
:
backend is shown on the right figure.

We can see good agreement between the distance matrices
calculated classically and on the IBM Q Experience.

and jth cluster vector are respectively denoted as |xi〉and

:
, |yj〉.

The registers |X〉 and |Y 〉 will properly store
::
are

:::::::::
initialized

::
to

:::::
store

::::
the input vectors and cluster vectors

if initialized as follows.

::::::::
according

:::
to

|X〉 =
1√
k

k∑
i=1

|xi〉 , (2)

|Y 〉 =
1√
l

l∑
j=1

|yj〉 ,. (3)

Both
::::
The

::::
two

:
registers along with the auxiliary qubit

compose into
::::::::
comprise

::::
the

:
initial state of the entire

circuit in a form denoted below.
::::::::
quantum

:::::::::
computer

::::::::
according

:::
to

|ψ0〉 = |X〉 |Y 〉 |a〉 (4)

where |a〉 is an auxiliary qubit in the state |0〉 initially.
Given this initial state we may begin the processing of

the problem. We start by applying a CNOT gate between
|X〉 and |Y 〉

|ψ1〉 = CNOT(Y,X) |ψ0〉 =
1√
kl

k∑
i,j

∣∣d1ij , . . . , dnij〉 ∣∣y1j , . . . , ynj 〉 |0〉

|ψ1〉
:::

= CNOT(Y,X)|ψ0〉
:::::::::::::::::

=
1√
kl

k∑
i,j=1

|d(1)ij , . . . , d
(n)
ij 〉|y

(1)
j , . . . , y

(n)
j 〉|0〉

:::::::::::::::::::::::::::::::::::::

(5)
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where dαij = CNOT(yαi , x
α
j ), α = 1 . . . n

:::::
where

:::::::::::::::::::
dαij = CNOT(yαi , x

α
j ),

:::::::::::
α = 1 . . . n,

:::
and i, j are the

qubit indexes in the registers.
In the result, at

::
At

:
this stage of the computation the

|X〉 no longer stores the input vectors, instead it stores
the information about pairwise different qubits between
the input vector {X} and cluster vector {Y }.

The next stage
:::::
Next, for each pair {X} and {Y }, an

:::
the accumulated information of all the differences is pro-
jected into

::::
onto

:
the amplitude of the superposed state.

This is achieved by applying the Hadamard gate on aux-
iliary qubit, then control

:::::::
followed

::
by

::
a
::::::::::
controlled phase

gate on |Xa〉 ,

::::::
defined

:::
as

R(φ) =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e−iφ

 ,. φ =
π

n
(6)

and again Hadamard gate
::::::
Finally,

::::::::
another

::::::::::
Hadamard

::::
gate

::
is

:::::::
applied.

After the first Hadamard on the ancillary qubit we
have the following state

::::::
ancilla

:::::
qubit

:::
the

:::::
state

::
is
:

|ψ2〉 = Ha |ψ1〉 =
1√
kl

∑
i,j i,j=1

:::

k
∣∣∣d1(1)

::ij , . . . , d
n(n)

::ij

〉 ∣∣∣y1(1)
::j , . . . , y

n(n)
::j

〉 (|0〉+ |1〉)√
2

.

(7)
Then we apply the control phase gate

::::::::
Applying

::::
the

::::::::::
controlled

::::::
phase

:::::
gate

::::
the

:::::
state

:::::
then

::::::::
becomes:

:

|ψ3〉 = R(X,a)

(π
n

)
|ψ2〉

=
1√
2kl

∑
i,j i,j=1

:::

k
∣∣∣d1(1)

::ij , . . . , d
n(n)

::ij

〉 ∣∣∣y1(1)
::j , . . . , y

n(n)
::j

〉
|0〉

+
1√
2kl

∑
i,j i,j=1

:::

k exp

(
−iπ
n

∑
ll=1
::

ndl(l)
: ij

) ∣∣∣d1(1)
::ij , . . . , d

n(n)
::ij

〉
×
:

∣∣∣y1(1)
::j , . . . , y

n(n)
::j

〉
|1〉 (8)

Applying another Hadamard on ancillary qubit and
doing necessary calculations the state of quantum register
reads

:::
the

::::::
ancilla

:::::
qubit

:::
we

:::::::
obtain

|ψ4〉 =
1√
kl

∑
i,j i,j=1

:::

ke

(−iπ
2n

n∑
l

dlij

)
exp
:::

(
−iπ
2n

∑
::

n
l=1d

(l)
ij

:::::

)

×
[
cos

(
π

2n

∑
ll=1
::

ndl(l)
: ij

) ∣∣∣d1(1)
::ij , . . . , d

n(n)
::ij

〉 ∣∣∣y1(1)
::j , . . . , y

n(n)
::j

〉
|0〉

+ i sin

(
π

2n

∑
ll=1
::

ndl(l)
: ij

) ∣∣∣d1(1)
::ij , . . . , d

n(n)
::ij

〉 ∣∣∣y1(1)
::j , . . . , y

n(n)
::j

〉
|1〉
]
.

(9)

This completed the stage of projecting the
::::
This

:::::::::
completes

:::
the

:::::
step

::::
for

::::::::::
projecting

:
differences between

pairs of {X} and {Y } onto the amplitude of the aux-
iliary qubit. The process is done in the x-basis, which
explains

:::::::
achieved

:::
by

:
the surrounding Hadamard gates.

There are two possible measurement outcomes of the aux-
iliary qubit, each .

::::::
Each

:
pair of {X} and {Y } forms a

subspace of the Hilbert space, the controlled phase gate
ensures to change amplitudes of those outcomes within
this subspace depending on how different the spin con-
figurations between {X} and {Y } are.

At this stage, the information of
::::::::
regarding

:::
the

:
differ-

ences between pairs of {X} and {Y } is no longer relevant,
thus we return to our initial basis for register |X〉 by ap-
plying the pairwise CNOT gates:

|ψf 〉 = CNOT(Y,X) |ψ4〉CNOT(Y,X)
:::::::::::

∣∣∣∣ψ4
::

〉

=
1√
kl

∑
i,j i,j=1

:::

ke

(−iπ
2n

n∑
l

dlij

)
exp
:::

(
−iπ
2n

∑
::

n
l=1d

(l)
ij

:::::

)[
cos

(
π

2n

∑
ll=1
::

ndl(l)
: ij

)
|Xi〉 |Yj〉 |0〉

+ i sin

(
π

2n

∑
ll=1
::

ndl(l)
: ij

)
|Xi〉 |Yj〉 |1〉

]
. (10)

This made
:::
This

:::::::
makes

:
{X} store

::
the

:
input vectors

again, just like at the initial stage, however it preserved

::
as

::
in

::::
the

::::::
initial

:::::
step.

:::
It

::::::::
however

:::::::::
preserves

:
the ampli-

tudes of the auxiliary qubit which are proportional to
how different each pairs of {X} and {Y } are.

In the result we
:::
We

:::::
thus

:
have the Hamming dis-

tances encoded into the amplitudes of the final state.
After getting

::::
From

::::
the statistics of the measurement out-

comeswe can produce
:
,
:
the distance matrix between two

data sets of binary vectors
:::
can

::
be

:::::::::
obtained

:
(Fig. II B).

In this case, a biggest amplitude in measurement result
coincide to a

:::
the

:::::::
biggest

:::::::::
amplitude

::
of
::::

the
::::::::::::
measurement

:::::
result

:::::::::
coincides

:::::
with

::::
the

:
smallest Hamming distance

when the measurement result of the auxiliary qubit is 0
and we have the inverse relationship when measurement
resulton the auxiliary qubit is 1.

:::::
ancilla

::::::
qubit

::
is

::
0.

::
If

:::
the

::::::
ancilla

:::::
qubit

::
is

::
1,

:::::
there

::
is

::
an

:::::::
inverse

::::::::::
relationship

:::::
with

:::
the

::::::::::::
measurement

::::::
result.

:

Measuring the Hamming distance of a particular pair
of input vector

::::::
vectors

:
|Xi〉 and cluster vector |Yj〉 con-

sists of extracting the relevant amplitude from the sub-
space that those states form, this can be done using the
following projector operator .

:::::::::
projection

::::::::
operator

:

Πi,j = |Xi〉〈Xi| ⊗ |Xi〉〈Yj | ⊗ I. (11)

Using the above projection operator, the subspace of
the Hilbert space formed by

:
a

:
particular pair of in-

put vector and cluster vector
:::
and

:::::::
cluster

:::::::
vectors can be

traced out as follows.

ρi,j = Tr1,...,2n(Πi,j |ψf 〉〈ψf |Πi,j). (12)
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Now the following two relevant
::::
From

::::
the

:::::
state

::::
the

::::::::
following

:::
two

:
amplitudes for the measurement results can

be extracted .

a0(xi, yj) =
〈0|ρi,j |0〉
tr(ρi,j)

,
〈0|ρi,j |0〉
Tr(ρi,j)

::::::::

(13)

a1(xi, yj) =
〈1|ρi,j |1〉
tr(ρi,j)

,
〈1|ρi,j |1〉
Tr(ρi,j)

.

::::::::

(14)

In order to reduce noise we average
:::
the

:
measurement

results over different states of the auxiliary
:::::
ancilla

:
qubit,

thus the measured Hamming distance between the input
vector |Xi〉 and cluster vector |Yj〉 takes the following
form.

:
is
:

dHi,j ∝ 1− 1

2
(a0(xi, yj) + (1− a1(xi, yj))). (15)

The Hamming distance measured in this way is
contained

::::::::
bounded

:
0 ≤ dHi,j ≤ 1, where intuitively, 0

would indicate
:::::::
indicates

:::::
that

:
xi are yj identical and 1

would mean
:::::
means

:
they are completely opposite in terms

of their pairwise binary coordinates.
In comparison with the circuits for Hamming distance

calculations proposed previously [62], our method allows
one to reduce

:::
the

:
number of gates in the circuit (at least

in
:::
and

:::::::::::
reconstruct

:::
all

::::::::
distance

:::::::
matrix

:::
in

:::::::
parallel

::::
and

:::
can

:::
be

::::::::::::
implemented

:::::
with

:::::
high

:::::::
fidelity.

:::::
We

:::::
note

::::
that

::
at

:::::
least

:::
for

::::
the

:
2n one-qubit NOT gates, depends on

actual realization
:::
this

::::::::
depends

:::
on

:::
the

::::::
actual

::::::::::
realization

::
of

:::
the

:
control phase gate in a quantum register on

::
at the

hardware level), reconstruct all distance matrix at once
and can be implemented with high fidelity on current
quantum devices.

III. DEMONSTRATION
:::::::::::::::::
EXPEIRMENTAL

::::::::::::::::::::
DEMONSTRATION OF QASOFMON THE IBM Q

EXPERIENCE

We now show
::::::::::::
experimental

:
results for a proof-of-

concept demonstration of the algorithm introduced in
the previous section, on a 16-qubit quantum computer
provided by IBM Q Experience. We implement

:::::::
perform

unsupervised data clustering for three sets of paper ab-
stracts from three different fields: quantum physics [63–
65], medicine [66–68] and biology [69–71]. Each set con-
sists of three random papers that focus on one of fol-
lowing topics: “Quantum Machine Learning” (QML),
“Cancer” (MED) and “Gene Expression” (BIO). Ab-
stracts were vectorized by the bag-of-words model in
order to choose most defining words in each data set
(see Fig. II B). This model represents text as a multiset
“bag” of its words taking into account only multiplicity
of words. Preparing the bag-of-words we excluded the
words that appear only in one abstract and more than in

FIG. 4. (a) Representation of the data set of abstracts with
the bag-of-words model is shown. Each abstract is represented
by a binary vector with 9 elements

:
,
::::::::::::
corresponding

::
to

::::
the

:
9

:::::
words

::
on

::::
the

:::::::::
horizontal

::::
axis. The samples are sorted into

groups (QML, MED, BIO) ,
::::
with 3 papers for each tag,

:::
for

:
a
::::
total

:::
of

:
9
:::::
paper. (b) The Hamming distance between each

vectorized abstract is shown with
:
as

:
a number in the matrix.

The sets of abstracts are well separated.

4 abstracts and we also excluded the word “level” from
consideration due to the frequent overlap between the
clusters because it gives instabilities for both classical
and quantum algorithms. We restricted our bag-of-word
size to 9 of the most frequent words from the full “bags-
of-word ” due to limitations of the number of qubits. Af-
ter vectorizing and pre-processing the data, the clusters
are well separated with the Hamming distance. We ob-
serve that distances between the abstracts inside clusters
are smaller than distances between the abstracts from
different clusters, showing a successful self-organization
(Fig. II B).

Classical
::
In

::::::::
classical

::
SOFM [12], as it has been

explained earlier, can be oversimplified into two basic
procedures:

:::
first

::
a
:
distance calculation between a one

:
a

sample vector and all cluster vectors and shifting
::
is

:::::
made,

::::
then

:
the closest cluster vector to

:
is
:::::::

shifted
::::::::
towards the

sample vector. In classical SOFM, the
:::
The

:
complexity of

algorithm
:
,
:
in the sense of

:::
the

:
number of distance calcu-

lations,
:
scales as O(LMN), where N is number of sam-

ples, M is number of randomly sampled cluster vectors,
and L is number of the shifts of cluster vectors. In the
QASOFM (Sec. II)

::::::::
described

::
in

::::
the

:::::::
previous

:::::::
section, dis-

tance calculations are realized on a quantum device (i.e.
the IBM Q Experience) with the use of circuit presented
in Fig. II B. This approach allows one to reduce the
number of operations in a number of cluster states with
an optimized number of gates that are possible to realize
on currently available quantum computing devices with
a limited number of qubits

::::
that

:::
are

:::::::::
currently

:::::::::
available.

The circuit realized in such a manner that calculation
of Hamming distance between the sample vector and all
cluster vectors is realized in one operation. The complex-
ity of the quantum assisted SOFM then scales as O(LN).

In order to check that our algorithm gives the correct

::::::::
expected results we compare it to classical calculations of
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FIG. 5. (a) Initial random binary vectors of clusters are
presented. We randomly sampled 3 binary vectors of size
9 as initial cluster vectors (labeled by 0

::
as

:::
C0, 1

::
C1, 2

:::
C2)and

it is shown how ,
::::

for the
::::::
selected

::
9
:
words from the bag of

words modelpresented in them. (b) The result of applying
our QASOFM implemented on the IBMQ ”

::::
IBM

::
Q

:::::::::
Experience

:
“ibmq 16 melbourne”

:
”
:
backendis shown on the bottom left

figure. Vectors mean cluster elements for BIO, MED, QML
groups,

:::
for

:::
the

:::
C0,

::::
C1,

::
C2

::::::
cluster

:::::::
vectors,

:
respectively(up to

down). (c) The evolution of label distribution on each learn-
ing epochis presented on the right figure. Good convergence
already is observed on the fourth epoch.

the distance matrix on two data sets of binary vectors, as
shown in Fig. II B. We see good agreement between the
distance matrices calculated classically and on the IBM
Q Experience. The theoretical calculations and classical
simulations show perfect agreement with each other.

An example of the QASOFM learning process is given
on

:::::
shown

:::
in Fig. ??

:
5. Initially, the cluster vectors were

randomly chosen (see Fig. ??) and
::
5)

::::
and

::::
the

:
label of

sample distribution is shown for the zeroth epoch in
Fig. ??

:
5(a). In order to prepare a superposition of cluster

vectors needed for the calculation of the distance matrix
at once we use the standard initialization of QISKIT li-
brary. Each epoch of the algorithm requires 9 distance
calculations in the quantum implementation (number of
samples in general case) or 27 distance calculations for
classical realization (product of number of samples and
number of cluster vectors in general case). In order to
realize the circuit for the distance calculation for the
quantum case we used the IBM Q machine. After the
distance calculation from each sample to all cluster vec-
tors at each epoch we label each sample with the index
of the closest cluster vector and shift the closest clus-
ter vectors to the sample one. The shift is made by the
change of the first binary element in the cluster vectors
different from the sample one. The evolution of the labels
presented on Fig. ??

:
5(c). Good convergence is already

observed in the fourth epoch.

IV. DISCUSSIONS

We have developed a quantum assisted SOFM and
showed a proof-of-concept

::::::::::::
experimental

:
demonstration

that it can be used to solve clustering problems in an un-
supervised mannerwith potential to outperform classical
counterpart in real life tasks. The procedure of solving
such clustering problem requires calculating the distance
many times in iterative way

:
,
::::::
which

::
is

::::::::::
calculated

:::::
using

:
a
:::::::
hybrid

::::::::::::::::
quantum-classical

::::::::::
procedure. We introduced

an optimized circuit for Hamming distance calculations
that can be implemented on currently available quan-
tum computing devices with high fidelity. Our circuit
could act as a

::::::::
quantum

::::::
circuit

:::::::::
performs

:::
the

:
distance-

computing component of a classical SOFMs algorithm
and in this way improve its performance. Due to wide
use of classical SOFMs in different areas of modern re-
search

:::
and

::::::::::
technology,

:
this can give opportunities for the

use of QASOFM in practical applications in near term,

::::::::::::
outperforming

::::::::
classical

::::::::::
algorithms.
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