
ar
X

iv
:1

80
1.

00
85

7v
1 

 [
st

at
.M

L
] 

 2
 J

an
 2

01
8

1

Optimal Bayesian Transfer Learning
Alireza Karbalayghareh, Student Member, IEEE, Xiaoning Qian, Senior Member, IEEE,

and Edward R. Dougherty, Fellow, IEEE

Abstract—Transfer learning has recently attracted significant
research attention, as it simultaneously learns from different
source domains, which have plenty of labeled data, and transfers
the relevant knowledge to the target domain with limited labeled
data to improve the prediction performance. We propose a
Bayesian transfer learning framework where the source and
target domains are related through the joint prior density of
the model parameters. The modeling of joint prior densities
enables better understanding of the “transferability” between
domains. We define a joint Wishart density for the precision
matrices of the Gaussian feature-label distributions in the source
and target domains to act like a bridge that transfers the
useful information of the source domain to help classification
in the target domain by improving the target posteriors. Using
several theorems in multivariate statistics, the posteriors and
posterior predictive densities are derived in closed forms with
hypergeometric functions of matrix argument, leading to our
novel closed-form and fast Optimal Bayesian Transfer Learning
(OBTL) classifier. Experimental results on both synthetic and
real-world benchmark data confirm the superb performance
of the OBTL compared to the other state-of-the-art transfer
learning and domain adaptation methods.

Index Terms—Transfer learning, domain adaptation, optimal
Bayesian transfer learning, optimal Bayesian classifier

I. INTRODUCTION

A basic assumption of traditional machine learning is that

data in the training and test sets are independently sampled

in one domain with the identical underlying distribution.

However, with the growing amount of heterogeneity in modern

data, the assumption of having only one domain may not

be reasonable. Transfer learning (TL) is a learning strategy

that enables us to learn from a source domain with plenty

of labeled data as well as a target domain with no or very

few labeled data in order to design a better classifier in the

target domain than the ones trained by target-only data for

its generalization performance. This can reduce the effort of

collecting labeled data for the target domain, which might be

very costly, if not impossible. Due to its importance, there has

been ongoing research on the topic of transfer learning and

many surveys in the recent years covering transfer learning

and domain adaptation methods from different perspectives

[1], [2], [3], [4], [5].

If we train a model in one domain and directly apply it in

another, the trained model may not generalize well, but if the

domains are related, appropriate transfer learning and domain

adaptation methods can borrow information from all the data

across the domains to develop better generalizable models

in the target domain. Transfer learning in medical genomics

is desirable, since the number of labeled data samples is
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often very limited due to the difficulty of having disease

samples and the prohibitive costs of human clinical trials.

However, it is relatively easier to obtain gene-expression data

for cell lines or other model species like mice or dogs. If

these different life systems share the same underlying disease

cellular mechanisms, we may utilize data in cell lines or model

species as our source domain to develop transfer learning

methods for more accurate human disease prognosis in the

target domain [6], [7].

A. Related Works

Domain adaptation (DA) is a specific case of transfer learn-

ing where the source and target domains have the same classes

or categories [2], [3], [5]. DA methods either adapt the model

learned in the source domain to be applied in the target domain

or adapt the source data so that the distribution can be close

to the one of the target data. Depending on the availability

of labeled target data, the DA methods are categorized as

unsupervised and semi-supervised algorithms. Unsupervised

DA problems applies to the cases where there are no labeled

target data and the algorithm uses only unlabeled data in

the target domain along with source labeled data [8]. Semi-

supervised DA methods use both the unlabeled and a few

labeled target data to learn a classifier in the target domain

with the help of source labeled data [9], [10], [11], [12].

Depending on whether the source and target domains have

the same feature space with the same feature dimension,

there are homogeneous and heterogeneous DA methods. The

first direction in homogeneous DA is instance re-weighting,

for which the most popular measure to re-weight the data

is Maximum Mean Discrepancy (MMD) [13] between the

two domains. Transfer Adaptive Boosting (TrAdaBoost) [14]

is another method that adaptively sets the weights for the

source and target samples during each iteration based on the

relevance of source and target data to help train the target

classifier. Another direction is model or parameter adaptation.

There are several efforts to adapt the SVM classifier designed

in the source domain for the target domain, for example,

based on residual error [15], [16]. Feature augmentation meth-

ods, such as Geodesic Flow Sampling (GFS) and Geodesic

Flow Kernel (GFK) [8], derive intermediate subspaces using

Geodesic flows, which interpolate between the source and

target domains. Finding an invariant latent domain in which

the distance between the empirical distributions of the source

and target data is minimized is another direction to tackle the

problem of domain adaptation, such as Invariant Latent Space

(ILS) in [17]. Authors in [17] proposed to learn an invariant

latent Hilbert space to address both the unsupervised and semi-

supervised DA problems, where a notion of domain variance is

http://arxiv.org/abs/1801.00857v1
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simultaneously minimized while maximizing a measure of dis-

criminatory power using Riemannian optimization techniques.

Max-Margin Domain Transform (MMDT) [10] is a semi-

supervised feature transformation DA method which uses a

cost function based on the misclassification loss and jointly

optimizes both the transformation and classifier parameters.

Another domain-invariant representation method [18] matches

the distributions in the source and target domains via a reg-

ularized optimal transportation model. Heterogeneous Feature

Augmentation (HFA) [9] is a heterogeneous DA method which

typically embeds the source and target data into a common

latent space prior to data augmentation.

Domain adaption has been recently studied in deep learning

frameworks like deep adaptation network (DAN) [19], residual

transfer networks (RTN) [20], and models based on generative

adversarial networks (GAN) such as domain adversarial neural

network (DaNN) [21] and coupled GAN (CoGAN) [22].

Although deep DA methods have shown promising results,

they require a fairly large amount of labeled data.

B. Main Contributions

This paper treats homogeneous transfer learning and domain

adaptation from Bayesian perspectives, a key aim being better

theoretical understanding when data in the source domain

are “transferrable” to help learning in the target domain.

When learning complex systems with limited data, Bayesian

learning can integrate prior knowledge to compensate the

generalization performance loss due to the lack of data for the

required sample complexity based on the predictive models

of choice. Rooted in Optimal Bayesian Classifiers (OBC)

[23], [24], which minimize the Bayesian error estimates of

classifiers over uncertainty classes of feature-label distribu-

tions, we propose a Bayesian transfer learning framework

and the corresponding Optimal Bayesian Transfer Learning

(OBTL) classifier to formulate the OBC in the target domain

by taking advantages of both the available data and the joint

prior knowledge in source and target domains. In this Bayesian

learning framework, transfer learning from the source to target

domain is through a joint prior probability density function

for the model parameters of the feature-label distributions

of the two domains. By explicitly modeling the dependency

of the model parameters of the feature-label distribution, the

posterior of the target model parameters can be updated via

the joint prior probability distribution function in conjunction

with the source and target data. Based on that, we derive the

effective class-conditional densities of the target domain, by

which the OBTL classifier is constructed.

Our problem definition is the same as the aforementioned

domain adaptation methods, where there are plenty of labeled

source data and few labeled target data. The source and target

data follow different multivariate Gaussian distributions with

arbitrary mean vectors and precision (inverse of covariance)

matrices. For the OBTL, we define a joint Normal-Wishart

prior distribution, where the two precision matrices in the two

domains are jointly connected. This joint prior distribution

for the two precision matrices of the two domains acts like

a bridge through which the useful knowledge of the source

domain can be transferred to the target domain, making the

posterior of the target parameters tighter with less uncertainty.

With such a Bayesian transfer learning framework and

several theorems from multivariate statistics, we define an

appropriate joint prior for the precision matrices using hy-

pergeometric functions of matrix argument, whose marginal

distributions are Wishart as well. The corresponding closed-

form posterior distributions for the target model parameters

are derived by integrating out all the source model parameters.

Having closed-form posteriors facilitates closed-form effective

class-conditional densities. Hence, the OBTL classifier can

be derived based on the corresponding hypergeometric func-

tions and does not need iterative and costly techniques like

MCMC sampling. Although the OBTL classifier has a closed

form, computing these hypergeometric functions involves the

computation of series of zonal polynomials, which is time-

consuming and not scalable to high dimension. To resolve this

issue, we use the Laplace approximations of these functions,

which preserves the good prediction performance of the OBTL

while making it efficient and scalable. The performance of

the OBTL is tested on both synthetic data and real-world

benchmark image datasets to show its superior performance

over state-of-the-art domain adaption methods.

The paper is organized as follows. Section II introduces the

Bayesian transfer learning framework. Section III derives the

closed-form posteriors of target parameters, via which Section

IV obtains the effective class-conditional densities in the target

domain. Section V derives the OBTL classifier, and Section

VI presents the OBC in the target domain and shows that the

OBTL classifier converts to the target-only OBC when there

is no interaction between the domains. Section VII introduces

the Laplace approximation of the hypergeometric functions of

matrix argument. Section VIII presents experimental results

using both synthetic and real-world benchmark data. Finally,

Section IX concludes the paper.

II. BAYESIAN TRANSFER LEARNING FRAMEWORK

We consider a supervised transfer learning problem in which

there are L common classes (labels) in each domain. Let Ds

and Dt denote the labeled datasets of the source and target

domains with the sizes of Ns and Nt, respectively, where

Nt ≪ Ns. Let Dl
s =

{

xl
s,1,x

l
s,2, · · · ,xl

s,nl
s

}

, l ∈ {1, · · · , L},

denote the nl
s data of the source domain for the label l. Simi-

larly, let Dl
t =

{

xl
t,1,x

l
t,2, · · · ,xl

t,nl
t

}

, l ∈ {1, · · · , L}, denote

the nl
t data of the target domain for the label l. Obviously, we

have Ds =
⋃L

l=1 Dl
s, Dt =

⋃L
l=1 Dl

t, Ns =
∑L

l=1 n
l
s, and

Nt =
∑L

l=1 n
l
t. Since we consider the homogeneous transfer

learning scenario, where the feature spaces are the same in

both the source and target domains, xl
s and xl

t are d×1 vectors

for d features of the source and target domains, respectively.

We use the Gaussian model for the feature-label distribution

in each domain:

xl
z ∼ N

(

µl
z,
(

Λl
z

)−1
)

, l ∈ {1, · · · , L}, (1)

where z ∈ {s, t} denotes the source, s, or target, t, domains;

µl
s and µl

t are the d× 1 mean vectors in the source and target
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domains for label l, respectively, and Λl
s and Λl

t are the d×d

precision matrices in the source and target domains for label

l, respectively. In the Bayesian framework, a Normal-Wishart

distribution is employed as a prior for mean and precision

matrices of the Gaussian models. Here we require a joint prior

distribution of the parameters of the source and target domains

to account for the dependency or “relatedness” between the

domains. We define the following joint prior distribution for

µl
s, µl

t, Λ
l
s, and Λl

s:

p
(

µl
s, µ

l
t,Λ

l
s,Λ

l
t

)

= p
(

µl
s|Λl

s

)

p
(

µl
t|Λl

t

)

p
(

Λl
s,Λ

l
t

)

, (2)

for l ∈ {1, · · · , L}, where we assume µl
s and µl

t are con-

ditionally independent given Λl
s and Λl

t for any class l. For

making the priors conjugate, both p
(

µl
s|Λl

s

)

and p
(

µl
t|Λl

t

)

are considered as Gaussian:

µl
z|Λl

z ∼ N
(

ml
z,
(

κl
zΛ

l
z

)−1
)

, l ∈ {1, · · · , L}, (3)

for z ∈ {s, t}, where ml
z is the d × 1 mean vector of µl

z ,

and κl
z is a positive scalar hyperparameter. We need to define

a joint distribution for Λl
s and Λl

t. In the case of a prior for

either Λl
s or Λl

t, we use a Wishart distribution as the conjugate

prior. Here we desire a joint distribution for Λl
s and Λl

t, whose

marginal distributions for both Λl
s and Λl

t are Wishart.

Letting xl =
[

xl
t

′

,xl
s

′
]

′

be the 2d × 1 augmented feature

vector and A
′

denoting the transpose of matrix A, a joint

sampling model would take the form

xl ∼ N
(

µl,
(

Λl
)−1
)

, l ∈ {1, · · · , L}, (4)

where

µl =

[

µl
t

µl
s

]

, Λl =

[

Λl
t Λl

ts

Λl
ts

′

Λl
s

]

, (5)

where µl is the 2d × 1 mean vector, and Λl is the 2d × 2d
precision matrix. Λl

t and Λl
s account for the interactions of

features within the source and target domains, respectively,

and Λl
ts accounts for the interactions of the features across

the source and target domains, for any class l ∈ {1, · · · , L}.

The key point here is that in transfer learning joint sampling of

the source and target domains is not possible, and we always

assume that there are two datasets separately sampled from

the source and target domains. That is why we use (1) instead

of (4) for the sampling model. If we would use (4) as the

sampling model, then we would use a Wishart distribution as

a prior for the precision matrix Λl in (5). This is where we

get the idea of defining a joint prior distribution for Λl
s and

Λl
t. If Λl in (5) has a Wishart distribution, by marginalizing

out the term Λl
ts one could derive a joint distribution for Λl

s

and Λl
t.

We present some theorems and definitions that will be used

later in deriving the OBTL classifier.

Definition 1. A random d × d symmetric positive-definite

matrix Λ has a nonsingular Wishart distribution with ν degrees

of freedom, Wd(M, ν), if ν ≥ d and M is a d × d positive-

definite matrix (M > 0) and the density is

p(Λ) =
[

2
νd
2 Γd

(ν

2

)

|M| ν2
]−1

|Λ| ν−d−1
2 etr

(

−1

2
M−1Λ

)

,

(6)

where |A| is the determinant of A, etr(A) = exp (tr(A)) and

Γd(α) is the multivariate gamma function given by

Γd(α) = π
d(d−1)

4

d
∏

i=1

Γ

(

α− i− 1

2

)

. (7)

Theorem 1. [25]: If Λ ∼ Wd(M, ν), and A is an r×d matrix

of rank r, where r ≤ d, then AΛA
′ ∼ Wr(AMA

′

, ν).

Corollary 1. If Λ ∼ Wd(M, ν) and Λ =
(

Λ11 Λ12

Λ
′

12 Λ22

)

,

where Λ11 and Λ22 are d1 × d1 and d2 × d2 submatrices,

respectively, and if M =
(

M11 M12

M
′

12 M22

)

is the corresponding

partition of M with M11 and M22 being two d1 × d1 and

d2 × d2 submatrices, respectively, then Λ11 ∼ Wd1(M11, ν)
and Λ22 ∼ Wd2(M22, ν).

Using Corollary 1, we can ensure that using the Wishart

distribution for the precision matrix Λl (5) of the joint model

in (4) will lead to the Wishart marginal distributions for Λl
s

and Λl
t in the source and target domains separately, which is

a desired property. Now we introduce a theorem, proposed in

[26], which gives the form of the joint distribution of the two

submatrices of a partitioned Wishart matrix.

Theorem 2. [26]: Let Λ =
(

Λ11 Λ12

Λ
′

12 Λ22

)

be a (d1+d2)×(d1+

d2) partitioned Wishart random matrix, where the diagonal

partitions are of sizes d1 × d1 and d2 × d2, respectively.

The Wishart distribution of Λ has ν ≥ d1 + d2 degrees of

freedom and positive-definite scale matrix M =
(

M11 M12

M
′

12 M22

)

partitioned in the same way as Λ. The joint distribution of the

two diagonal partitions Λ11 and Λ22 have the density function

given by

p(Λ11,Λ22) =

K etr

(

−1

2

(

M−1
11 + F

′

C2F
)

Λ11

)

etr

(

−1

2
C−1

2 Λ22

)

× |Λ11|
ν−d2−1

2 |Λ22|
ν−d1−1

2 0F1

(

ν

2
;
1

4
G

)

,

(8)

where C2 = M22−M
′

12M
−1
11 M12, F = C−1

2 M
′

12M
−1
11 , G =

Λ
1
2
22FΛ11F

′

Λ
1
2
22, K−1 = 2

(d1+d2)ν
2 Γd1

(

ν
2

)

Γd2

(

ν
2

)

|M| ν2 ,

and 0F1 is the generalized matrix-variate hypergeometric

function.

Definition 2. [27]: The generalized hypergeometric function

of one matrix argument is defined by

pFq(a1, · · · , ap; b1, · · · , bq;X)

=

∞
∑

k=0

∑

κ⊢k

(a1)κ · · · (ap)κ
(b1)κ · · · (bq)κ

Cκ(X)

k!
, (9)

where ai, i = 1, · · · , p, and bj , j = 1, · · · , q, are arbitrary

complex (real in our case) numbers, Cκ(X) is the zonal

polynomial of d × d symmetric matrix X corresponding to

the ordered partition κ = (k1, · · · , kd), k1 ≥ · · · ≥ kd ≥ 0,
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k1 + · · · kd = k and
∑

κ⊢k denotes summation over all

partitions κ of k. The generalized hypergeometric coefficient

(a)κ is defined by

(a)κ =
d
∏

i=1

(

a− i − 1

2

)

ki

, (10)

where (a)r = a(a + 1) · · · (a + r − 1), r = 1, 2, · · · , with

(a)0 = 1.

Conditions for convergence of the series in (9) are available

in the literature [28]. From (9) it follows

0F0(X) =

∞
∑

k=0

∑

κ⊢k

Cκ(X)

k!
=

∞
∑

k=0

(tr(X))k

k!
= etr(X),

1F0(a;X) =

∞
∑

k=0

∑

κ⊢k

(a)κCκ(X)

k!
= |Im −X|−a, ||X|| < 1,

0F1(b;X) =

∞
∑

k=0

∑

κ⊢k

Cκ(X)

(b)κk!
,

1F1(a; b;X) =
∞
∑

k=0

∑

κ⊢k

(a)κ
(b)κ

Cκ(X)

k!
,

2F1(a, b; c;X) =

∞
∑

k=0

∑

κ⊢k

(a)κ(b)κ
(c)κ

Cκ(X)

k!
, ||X|| < 1,

(11)

where ||X|| < 1 means that the maximum of the absolute

values of the eigenvalues of X is less than 1. 1F1(a; b;X)
and 2F1(a, b; c;X) are respectively called Confluent and Gauss

hypergeometric functions of matrix argument.

Theorem 3. [25]: Let Z be a complex symmetric matrix

whose real part is positive-definite, and let X be an arbitrary

complex symmetric matrix. Then
∫

R>0

etr(−ZR)|R|α− d+1
2 Cκ(RX)dR

= Γd(α)(α)κ|Z|−αCκ(XZ−1),

(12)

the integration being over the space of positive-definite d× d

matrices, and valid for all complex numbers α satisfying

Re(α) > d−1
2 . Γd(α) is the multivariate gamma function

defined in (7).

Theorem 4. [29]: The zonal polynomials are invariant under

orthogonal transformation. That is, for a d × d symmetric

matrix X,

Cκ(X) = Cκ(HXH
′

), (13)

where H is an orthogonal matrix of order d. If R is a

symmetric positive-definite matrix of order d, then

Cκ(RX) = Cκ(R
1/2XR1/2). (14)

As a result, if R is a symmetric positive-definite matrix, the

hypergeometric function has the following property:

pFq(a1, · · · , ap; b1, · · · , bq;RX)

= pFq(a1, · · · , ap; b1, · · · , bq;R1/2XR1/2).
(15)

Theorem 5. [30]: If Z > 0 and Re(α) > d−1
2 , and X is a

d× d symmetric matrix, we have
∫

R>0

etr(−ZR)|R|α− d+1
2

× pFq(a1, · · · , ap; b1, · · · , bq;RX)dR

=

∫

R>0

etr(−ZR)|R|α− d+1
2

× pFq(a1, · · · , ap; b1, · · · , bq;R1/2XR1/2)dR

= Γd(α)|Z|−α
p+1Fq(a1, · · · , ap, α; b1, · · · , bq;XZ−1).

Now, using Theorem 2, we define the joint prior distribution,

p(Λl
s,Λ

l
t) in (2), of the precision matrices of the source and

target domains for class l ∈ {1, · · · , L} as follows:

p(Λl
t,Λ

l
s) = K letr

(

−1

2

(

(

Ml
t

)−1
+ Fl

′

ClFl
)

Λl
t

)

× etr

(

−1

2

(

Cl
)−1

Λl
s

)

×
∣

∣Λl
t

∣

∣

νl
−d−1
2

∣

∣Λl
s

∣

∣

νl
−d−1
2

0F1

(

νl

2
;
1

4
Gl

)

,

(16)

where Ml =

(

M
l
t M

l
ts

M
l
ts

′

M
l
s

)

is a 2d × 2d positive defi-

nite scale matrix, νl ≥ 2d denotes degrees of freedom,

Cl = Ml
s − Ml

ts

′
(

Ml
t

)−1
Ml

ts, Fl =
(

Cl
)−1

Ml
ts

′
(

Ml
t

)−1
,

Gl = Λl
s

1
2FlΛl

tF
l
′

Λl
s

1
2 , and (K l)

−1
= 2dν

l

Γ2
d

(

νl

2

)

|Ml| ν
l

2 .

Using Corollary 1, Λl
t and Λl

s have the following Wishart

marginal distributions:

Λl
z ∼ Wd(M

l
z, ν

l), l ∈ {1, · · · , L}, z ∈ {s, t}. (17)

III. POSTERIORS OF TARGET PARAMETERS

Having defined the prior distributions in the previous sec-

tion, we aim to derive the posterior distribution of the parame-

ters of the target domain upon observing the training source Ds

and target Dt datasets. The likelihood of the datasets Dt and

Ds is conditionally independent given the parameters of the

target and source domains. The dependence between the two

domains is due to the dependence of the prior distributions of

the precision matrices, as shown in Fig 1. Within each domain,

source or target, the likelihoods of the different classes are also

conditionally independent given the parameters of the classes.

As such, the joint likelihood of the datasets Dt and Ds can

be written as

p(Dt,Ds|µt, µs,Λt,Λs) = p(Dt|µt,Λt)p(Ds|µs,Λs)

= p(D1
t , · · · ,DL

t |µ1
t , · · · , µL

t ,Λ
1
t , · · · ,ΛL

t )

× p(D1
s , · · · ,DL

s |µ1
s, · · · , µL

s ,Λ
1
s, · · · ,ΛL

s )

=

L
∏

l=1

p(Dl
t|µl

t,Λ
l
t)

L
∏

l=1

p(Dl
s|µl

s,Λ
l
s).

(18)

The posterior of the parameters given Dt and Ds satisfies

p(µt, µs,Λt,Λs|Dt,Ds)

∝ p(Dt,Ds|µt, µs,Λt,Λs)p(µt, µs,Λt,Λs)

∝
L
∏

l=1

p(Dl
t|µl

t,Λ
l
t)

L
∏

l=1

p(Dl
s|µl

s,Λ
l
s)

L
∏

l=1

p(µl
t, µ

l
s,Λ

l
t,Λ

l
s),

(19)
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Dl
t µl

t Λl
t Λl

s µl
s Dl

s

Target Domain Source Domain

Figure 1: Dependency of the source and target domains through their precision matrices for any class l ∈ {1, · · · , L}.

where we assume that the priors of the parameters

in different classes are independent, p(µt, µs,Λt,Λs) =
∏L

l=1 p(µ
l
t, µ

l
s,Λ

l
t,Λ

l
s). From (2) and (19),

p(µt, µs,Λt,Λs|Dt,Ds) ∝
L
∏

l=1

p(Dl
t|µl

t,Λ
l
t)p(Dl

s|µl
s,Λ

l
s)

×p
(

µl
s|Λl

s

)

p
(

µl
t|Λl

t

)

p
(

Λl
s,Λ

l
t

)

.
(20)

We can see that the posterior of the parameters is equal to the

product of the posteriors of the parameters of each class:

p(µt, µs,Λt,Λs|Dt,Ds) =

L
∏

l=1

p(µl
t, µ

l
s,Λ

l
t,Λ

l
s|Dl

t,Dl
s), (21)

where

p(µl
t, µ

l
s,Λ

l
t,Λ

l
s|Dl

t,Dl
s) ∝ p(Dl

t|µl
t,Λ

l
t)p(Dl

s|µl
s,Λ

l
s)

×p
(

µl
s|Λl

s

)

p
(

µl
t|Λl

t

)

p
(

Λl
s,Λ

l
t

)

. (22)

Since we are interested in the posterior of the parameters of the

target domain, we integrate out the parameters of the source

domain in (21):

p(µt,Λt|Dt,Ds) =

∫

µs,Λs

p(µt, µs,Λt,Λs|Dt,Ds)dµsdΛs

=

L
∏

l=1

∫

µl
s,Λ

l
s

p(µl
t, µ

l
s,Λ

l
t,Λ

l
s|Dl

t,Dl
s)dµ

l
sdΛ

l
s

=

L
∏

l=1

p(µl
t,Λ

l
t|Dl

t,Dl
s),

where

p(µl
t,Λ

l
t|Dl

t,Dl
s)

=

∫

µl
s,Λ

l
s

p(µl
t, µ

l
s,Λ

l
t,Λ

l
s|Dl

t,Dl
s)dµ

l
sdΛ

l
s

∝ p(Dl
t|µl

t,Λ
l
t)p
(

µl
t|Λl

t

)

×
∫

µl
s,Λ

l
s

p(Dl
s|µl

s,Λ
l
s)p
(

µl
s|Λl

s

)

p
(

Λl
s,Λ

l
t

)

dµl
sdΛ

l
s.

(23)

From (1), for each domain z ∈ {s, t},

p(Dl
z|µl

z,Λ
l
z) = (2π)−

dnl
z

2

∣

∣Λl
z

∣

∣

nl
z
2 exp

(

−1

2
Ql

z

)

, (24)

where Ql
z =

∑nl
z

i=1

(

xl
z,i − µl

z

)
′

Λl
z

(

xl
z,i − µl

z

)

. Moreover,

from (3), for each domain z ∈ {s, t},

p
(

µl
z|Λl

z

)

= (2π)−
d
2

(

κl
z

)

d
2
∣

∣Λl
z

∣

∣

1
2

× exp

(

−κl
z

2

(

µl
z −ml

z

)

′

Λl
z

(

µl
z −ml

z

)

)

. (25)

From (16), (23), (24), and (25),

p(µl
t,Λ

l
t|Dl

t,Dl
s) ∝

∣

∣Λl
t

∣

∣

nl
t
2 exp

(

−1

2
Ql

t

)

∣

∣Λl
t

∣

∣

1
2

× exp

(

−κl
t

2

(

µl
t −ml

t

)

′

Λl
t

(

µl
t −ml

t

)

)

×
∣

∣Λl
t

∣

∣

νl
−d−1
2 etr

(

−1

2

(

(

Ml
t

)−1
+ Fl

′

ClFl
)

Λl
t

)

×
∫

µl
s,Λ

l
s

{

∣

∣Λl
s

∣

∣

nl
s
2 exp

(

−1

2
Ql

s

)

∣

∣Λl
s

∣

∣

1
2

× exp

(

−κl
s

2

(

µl
s −ml

s

)

′

Λl
s

(

µl
s −ml

s

)

)

×
∣

∣Λl
s

∣

∣

νl
−d−1
2 etr

(

−1

2

(

Cl
)−1

Λl
s

)

× 0F1

(

νl

2
;
1

4
Λl

s

1
2FlΛl

tF
l
′

Λl
s

1
2

)}

dµl
sdΛ

l
s.

(26)

Lemma 1. If D = {x1, · · · ,xn} where xi is a d× 1 vector

and xi ∼ N (µ, (Λ)−1), for i = 1, · · · , n, and (µ,Λ) has a

Normal-Wishart prior, such that, µ|Λ ∼ N (m, (κΛ)−1) and

Λ ∼ Wd(M, ν), then the posterior of (µ,Λ) upon observing

D is also a Normal-Wishart distribution:

µ|Λ,D ∼ N (mn, (κnΛ)−1),

Λ|D ∼ Wd(Mn, νn),
(27)

where

κn = κ+ n, νn = ν + n, mn =
κm+ nx̄

κ+ n
,

M−1
n = M−1 + S+

κn

κ+ n
(m− x̄)(m − x̄)

′

,
(28)

depending on the sample mean and covariance matrix

x̄ =
1

n

n
∑

i=1

xi, S =

n
∑

i=1

(xi − x̄)(xi − x̄)
′

. (29)

Using Lemma 1 we can simplify (26) as

p(µl
t,Λ

l
t|Dl

t,Dl
s)

∝
∣

∣Λl
t

∣

∣

1
2 exp

(

−κl
t,n

2

(

µl
t −ml

t,n

)

′

Λl
t

(

µl
t −ml

t,n

)

)

×
∣

∣Λl
t

∣

∣

νl+nl
t−d−1

2 etr

(

−1

2

(

Tl
t

)−1
Λl

t

)

∫

µl
s,Λ

l
s

{

∣

∣Λl
s

∣

∣

1
2 exp

(

−κl
s,n

2

(

µl
s −ml

s,n

)

′

Λl
s

(

µl
s −ml

s,n

)

)

×
∣

∣Λl
s

∣

∣

νl+nl
s−d−1

2 etr

(

−1

2

(

Tl
s

)−1
Λl

s

)

× 0F1

(

νl

2
;
1

4
Λl

s

1
2FlΛl

tF
l
′

Λl
s

1
2

)}

dµl
sdΛ

l
s,

(30)
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where

κl
t,n = κl

t + nl
t, κl

s,n = κl
s + nl

s,

ml
t,n =

κl
tm

l
t + nl

tx̄
l
t

κl
t + nl

t

, ml
s,n =

κl
sm

l
s + nl

sx̄
l
s

κl
s + nl

s

,

(

Tl
t

)−1
=
(

Ml
t

)−1
+ Fl

′

ClFl + Sl
t

+
κl
tn

l
t

κl
t + nl

t

(ml
t − x̄l

t)(m
l
t − x̄l

t)
′

,

(

Tl
s

)−1
=
(

Cl
)−1

+ Sl
s +

κl
sn

l
s

κl
s + nl

s

(ml
s − x̄l

s)(m
l
s − x̄l

s)
′

,

(31)

with sample means and covariances for z ∈ {s, t} as

x̄l
z =

1

nl
z

nl
z
∑

i=1

xl
z,i, Sl

z =

nl
z
∑

i=1

(

xl
z,i − x̄l

z

) (

xl
z,i − x̄l

z

)

′

.

Using the equation
∫

x

exp

(

−1

2
(x− µ)

′

Λ(x− µ)

)

dx = (2π)
d
2 |Λ|− 1

2 , (32)

and integrating out µl
s in (30) yields

p(µl
t,Λ

l
t|Dl

t,Dl
s)

∝
∣

∣Λl
t

∣

∣

1
2 exp

(

−
κl
t,n

2

(

µl
t −ml

t,n

)

′

Λl
t

(

µl
t −ml

t,n

)

)

×
∣

∣Λl
t

∣

∣

νl+nl
t−d−1

2 etr

(

−1

2

(

Tl
t

)−1
Λl

t

)

×
∫

Λl
s

{

∣

∣Λl
s

∣

∣

νl+nl
s−d−1

2 etr

(

−1

2

(

Tl
s

)−1
Λl

s

)

× 0F1

(

νl

2
;
1

4
Λl

s

1
2FlΛl

tF
l
′

Λl
s

1
2

)}

dΛl
s.

(33)

The integral, I , in (33) can be done using Theorem 5 as

I = Γd

(

νl + nl
s

2

)

×
∣

∣2Tl
s

∣

∣

νl+nl
s

2
1F1

(

νl + nl
s

2
;
νl

2
;
1

2
FlΛl

tF
l
′

Tl
s

)

,

(34)

where 1F1(a; b;X) is the Confluent hypergeometric function

with the matrix argument X. As a result, (33) becomes

p(µl
t,Λ

l
t|Dl

t,Dl
s) =

Al
∣

∣Λl
t

∣

∣

1
2 exp

(

−
κl
t,n

2

(

µl
t −ml

t,n

)

′

Λl
t

(

µl
t −ml

t,n

)

)

×
∣

∣Λl
t

∣

∣

νl+nl
t−d−1

2 etr

(

−1

2

(

Tl
t

)−1
Λl

t

)

× 1F1

(

νl + nl
s

2
;
νl

2
;
1

2
FlΛl

tF
l
′

Tl
s

)

.

(35)

where the constant of proportionality, Al, makes the integra-

tion of the posterior p(µl
t,Λ

l
t|Dl

t,Dl
s) with respect to µl

t and

Λl
t equal to one. Hence,

(

Al
)−1

=

∫

Λl
t

∣

∣Λl
t

∣

∣

νl+nl
t−d−1

2 etr

(

−1

2

(

Tl
t

)−1
Λl

t

)

∣

∣Λl
t

∣

∣

1
2

×
∫

µl
t

exp

(

−κl
t,n

2

(

µl
t −ml

t,n

)

′

Λl
t

(

µl
t −ml

t,n

)

)

dµl
t

×1 F1

(

νl + nl
s

2
;
νl

2
;
1

2
FlΛl

tF
l
′

Tl
s

)

dΛl
t.

(36)

Using (32), the inner integral equals to (2π)
d
2 |κl

t,nΛ
l
t|−

1
2 =

(

2π
κl
t,n

)
d
2 |Λl

t|−
1
2 . Hence,

(

Al
)−1

=

(

2π

κl
t,n

)
d
2 ∫

Λl
t

∣

∣Λl
t

∣

∣

νl+nl
t−d−1

2 etr

(

−1

2

(

Tl
t

)−1
Λl

t

)

× 1F1

(

νl + nl
s

2
;
νl

2
;
1

2
FlΛl

tF
l
′

Tl
s

)

dΛl
t.

(37)

Letting the variable change Ω = FlΛl
tF

l
′

, we have

dΩ = |Fl|d+1dΛl
t and Λl

t =
(

Fl
)−1

Ω
(

Fl
′
)−1

. Since

tr(ABCD) = tr(BCDA) = tr(CDAB) = tr(DABC)
and |ABC| = |A||B||C|, Al can be derived as

(

Al
)−1

=

(

2π

κl
t,n

)
d
2

|Fl|−(νl+nl
t)
∫

Ω

{

|Ω|
νl+nl

t−d−1

2

× etr

(

−1

2

(

Fl
′
)−1

(

Tl
t

)−1
Fl−1

Ω

)

× 1F1

(

νl + nl
s

2
;
νl

2
;
1

2
ΩTl

s

)}

dΩ

=

(

2π

κl
t,n

)
d
2

2
d(νl+nl

t)
2 Γd

(

νl + nl
t

2

)

∣

∣Tl
t

∣

∣

νl+nl
t

2

× 2F1

(

νl + nl
s

2
,
νl + nl

t

2
;
νl

2
;Tl

sF
lTl

tF
l
′

)

,

(38)

where the second equality follows from Theorem 5, and

2F1(a, b; c;X) is the Gauss hypergeometric function with the

matrix argument X. As such, we have derived the closed-form

posterior distribution of the target parameters (µl
t,Λ

l
t) in (35),

where Al is given by (38).

IV. EFFECTIVE CLASS-CONDITIONAL DENSITIES

For optimal Bayesian classifier [23], [24], using the pos-

terior predictive densities of the classes, called “effective

class-conditional densities”, leads to the optimal choices for

classifiers in order to minimize the Bayesian error estimates

of the classifiers. Similarly, we can derive the effective class-

conditional densities for defining the OBTL classifier in the

target domain, albeit with the posterior of the target parameters

derived from both the target and source datasets.

Suppose that x denotes a d × 1 new observed data point

in the target domain, where we aim to optimally classify

it to one of the classes l ∈ {1, · · · , L}. In the context of

the optimal Bayesian classifier, we need the effective class-

conditional densities for the L classes, defined as

p(x|l) =
∫

µl
t,Λ

l
t

p(x|µl
t,Λ

l
t)π

⋆(µl
t,Λ

l
t)dµ

l
tdΛ

l
t, (39)
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for l ∈ {1, · · · , L}, where π⋆(µl
t,Λ

l
t) = p(µl

t,Λ
l
t|Dl

t,Dl
s)

is the posterior of (µl
t,Λ

l
t) upon observation of Dl

t and Dl
s.

The likelihood p(x|µl
t,Λ

l
t) and posterior p(µl

t,Λ
l
t|Dl

t,Dl
s) are

given in (1) and (35), respectively. Hence,

p(x|l) = (2π)−
d
2 Al

∫

µl
t,Λ

l
t

{

|Λl
t|

1
2

× exp

(

−1

2

(

x− µl
t

)

′

Λl
t

(

x− µl
t

)

)

×
∣

∣Λl
t

∣

∣

1
2 exp

(

−
κl
t,n

2

(

µl
t −ml

t,n

)

′

Λl
t

(

µl
t −ml

t,n

)

)

×
∣

∣Λl
t

∣

∣

νl+nl
t−d−1

2 etr

(

−1

2

(

Tl
t

)−1
Λl

t

)

× 1F1

(

νl + nl
s

2
;
νl

2
;
1

2
FlΛl

tF
l
′

Tl
s

)}

dµl
tdΛ

l
t.

(40)

Similarly, we can simplify (40) as

p(x|l) = (2π)−
d
2 Al

∫

µl
t,Λ

l
t

{

|Λl
t|

1
2

× exp

(

−κl
x

2

(

µl
t −ml

x

)

′

Λl
t

(

µl
t −ml

x

)

)

×
∣

∣Λl
t

∣

∣

νl+nl
t+1−d−1

2 etr

(

−1

2

(

Tl
x

)−1
Λl

t

)

× 1F1

(

νl + nl
s

2
;
νl

2
;
1

2
FlΛl

tF
l
′

Tl
s

)}

dµl
tdΛ

l
t,

(41)

where

κl
x = κl

t,n + 1 = κl
t + nl

t + 1, ml
x =

κl
t,nm

l
t,n + x

κt,n + 1
,

(

Tl
x

)−1
=
(

Tl
t

)−1
+

κl
t,n

κl
t,n + 1

(

ml
t,n − x

) (

ml
t,n − x

)

′

.

(42)

The integration in (41) is similar to the one in (36). As a result,

using (38),

p(x|l) = (2π)−
d
2 Al

(

2π

κl
x

)
d
2

2
d(νl+nl

t+1)
2 Γd

(

νl + nl
t + 1

2

)

∣

∣Tl
x

∣

∣

νl+nl
t+1

2
2F1

(

νl + nl
s

2
,
νl + nl

t + 1

2
;
νl

2
;Tl

sF
lTl

x
Fl

′

)

.

(43)

By replacing the value of Al, we have the effective class-

conditional density. We denote OOBTL(x|l) = p(x|l), since it

is the objective function for the OBTL classifier. As such,

OOBTL(x|l) = π− d
2

(

κl
t,n

κl
x

)
d
2

Γd

(

νl + nl
t + 1

2

)

× Γ−1
d

(

νl + nl
t

2

)

∣

∣Tl
x

∣

∣

νl+nl
t+1

2
∣

∣Tl
t

∣

∣

−
νl+nl

t
2

× 2F1

(

νl + nl
s

2
,
νl + nl

t + 1

2
;
νl

2
;Tl

sF
lTl

x
Fl

′

)

× 2F
−1
1

(

νl + nl
s

2
,
νl + nl

t

2
;
νl

2
;Tl

sF
lTl

tF
l
′

)

.

(44)

V. OPTIMAL BAYESIAN TRANSFER LEARNING CLASSIFIER

Let clt be the prior probability that the target sample x

belongs to the class l ∈ {1, · · · , L}. Since 0 < clt < 1 and
∑L

l=1 c
l
t = 1, a Dirichlet prior is assumed:

(c1t , · · · , cLt ) ∼ Dir(L, ξt), (45)

where ξt = (ξ1t , · · · , ξLt ) are the concentration parameters, and

ξlt > 0 for l ∈ {1, · · · , L}. As the Dirichlet distribution is a

conjugate prior for the categorical distribution, upon observing

n = (n1
t , · · · , nL

t ) data for class l in the target domain, the

posterior has a Dirichlet distribution:

π⋆ = (c1t , · · · , cLt |n) ∼ Dir(L, ξt + n)

= Dir(L, ξ1t + n1
t , · · · , ξLt + nL

t ),
(46)

with the posterior mean of clt as

Eπ⋆(clt) =
ξlt + nl

t

Nt + ξ0t
, (47)

where Nt =
∑L

l=1 n
l
t and ξ0t =

∑L
l=1 ξ

l
t. As such, the

optimal Bayesian transfer learning (OBTL) classifier for any

new unlabeled sample x in the target domain is defined as

ΨOBTL(x) = arg max
l∈{1,··· ,L}

Eπ⋆(clt)OOBTL(x|l), (48)

which minimizes the expected error of the classifier. If we

do not have any prior knowledge for the selection of classes,

we use the same concentration parameter for all the classes:

ξt = (ξ, · · · , ξ). Hence, if the number of samples in each class

is the same, n1
t = · · · = nL

t , the first term Eπ⋆ is the same

for all the classes and (48) is reduced to:

ΨOBTL(x) = arg max
l∈{1,··· ,L}

OOBTL(x|l). (49)

VI. OBC IN TARGET DOMAIN

To see how the source data can help improve the per-

formance, we compare the OBTL classifier with the OBC

when there is only the target domain. Using exactly the same

modeling and parameters as the previous sections, the priors

for µl
t and Λl

t, from (3) and (17), are given by

µl
t|Λl

t ∼ N
(

ml
t,
(

κl
tΛ

l
t

)−1
)

,

Λl
t ∼ Wd(M

l
t, ν

l).
(50)

Using Lemma 1, upon observing the dataset Dl
t, the posteriors

of µl
t and Λl

t will be

µl
t|Λl

t,Dl
t ∼ N

(

ml
t,n,
(

κl
t,nΛ

l
t

)−1
)

,

Λl
t|Dl

t ∼ Wd(M
l
t,n, ν

l
t,n),

(51)

where

κl
t,n = κl

t + nl
t, νlt,n = νl + nl

t, ml
t,n =

κl
tm

l
t + nl

tx̄
l
t

κl
t + nl

t

,

(

Ml
t,n

)−1
=
(

Ml
t

)−1
+ Sl

t +
κl
tn

l
t

κl
t + nl

t

(ml
t − x̄l

t)(m
l
t − x̄l

t)
′

,

(52)

with the corresponding sample mean and covariance:

x̄l
t =

1

nl
t

nl
t

∑

i=1

xl
t,i, Sl

t =

nl
t

∑

i=1

(

xl
t,i − x̄l

t

) (

xl
t,i − x̄l

t

)

′

. (53)
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Using (39) and similar integral steps, the effective class-

conditional densities p(x|l) = OOBC(x|l) for the OBC are

derived as [23]

OOBC(x|l) = π− d
2

(

κl
t,n

κl
t,n + 1

)
d
2

Γd

(

νl + nl
t + 1

2

)

× Γ−1
d

(

νl + nl
t

2

)

∣

∣Ml
x

∣

∣

νl+nl
t+1

2
∣

∣Ml
t,n

∣

∣

−
νl+nl

t
2 ,

(54)

where

(

Ml
x

)−1
=
(

Ml
t,n

)−1
+

κl
t,n

κl
t,n + 1

(ml
t,n−x)(ml

t,n−x)
′

. (55)

The multi-class OBC [31], under a zero-one loss function, can

be defined as

ΨOBC(x) = arg max
l∈{1,··· ,L}

Eπ⋆(clt)OOBC(x|l). (56)

Similar to the OBTL, in the case of equal prior probabilities

for the classes,

ΨOBC(x) = arg max
l∈{1,··· ,L}

OOBC(x|l). (57)

For binary classification, the definition of the OBC in (56) is

equivalent to the definition in [23], where it is defined to be

the binary classifier possessing the minimum Bayesian mean

square error estimate [32] relative to the posterior distribution.

Theorem 6. If Ml
ts = 0 for all l ∈ {1, · · · , L}, then

ΨOBTL(x) = ΨOBC(x), (58)

meaning that if there is no interaction between the source

and target domains in all the classes a priori, then the OBTL

classifier turns to the OBC classifier in the target domain.

Proof. If Ml
ts = 0 for all l ∈ {1, · · · , L}, then Fl = 0. Since

2F1(a, b; c;0) = 1 for any values of a, b, and c, the Gauss

hypergeometric functions will disappear in (44). From (31) and

(52), Tl
t = Ml

t,n. From (42) and (55), Tl
x
= Ml

x
. As a result,

OOBTL(x|l) = OOBC(x|l), and consequently, ΨOBTL(x) =
ΨOBC(x).

VII. LAPLACE APPROXIMATION OF GAUSS

HYPERGEOMETRIC FUNCTION

We have derived the effective class-conditional densities

in closed forms (44). However, deriving the OBTL classifier

(48) requires computing the Gauss hypergeometric function

of matrix argument. Computing the exact values of hyperge-

ometirc functions of matrix argument using the series of zonal

polynomial, as in (11), is time-consuming and is not scalable

to high dimension. To facilitate computation, we propose to

use the Laplace approximation of this function, as in [33],

which is computationally efficient and scalable.

The Gauss hypergeomeric function has the following inte-

gral representation:

2F1(a, b; c;X) = B−1
d (a, c− a)

×
∫

0d<Y<Id

|Y|a− d+1
2 |Id −Y|c−a− d+1

2 |Id −XY|−bdY,

(59)

which is valid under the following conditions: X ∈ Cd×d

is symmetric and satisfies Re(X) < Id, Re(a) > d−1
2 , and

Re(c− a) > d−1
2 . Bd(α, β) is the multivariate beta function

Bd(α, β) =
Γd(α)Γd(β)

Γd(α+ β)
, (60)

where Γd(α) is the multivariate gamma function defined in

(7). The Laplace approximation is one common solution to

approximate the integral

I =

∫

y∈D

h(y) exp(−λg(y))dy, (61)

where D ⊆ Rd is an open set and λ is a real parameter. If

g(λ) has a unique minimum over D at point ŷ ∈ D, then the

Laplace approximation to I is given by

Ĩ = (2π)
d
2 λ− d

2 |g′′

(ŷ)|− 1
2 h(ŷ) exp(−λg(ŷ)), (62)

where g
′′

(y) = ∂2g(y)
∂y∂yT is the Hessian of g(y). The hy-

pergeometric function 2F1(a, b; c;X) depends only on the

eigenvalues of the symmetric matrix X. Hence, without loss

of generality, it is assumed that X = diag{x1, · · · , xd}. The

following g and h functions are used for (59):

g(Y) = −a log |Y| − (c− a) log |Id −Y|+ log |Id −XY|,
h(Y) = B−1

d (a, c− a)|Y|− d+1
2 |Id −Y|− d+1

2 .
(63)

Using (62) and (63), the Laplace approximation to

2F1(a, b; c;X) is given by [33]

2F̃1(a, b; c;X) =
2

d
2 π

d(d+1)
4

Bd(a, c− a)
J
− 1

2
2,1

×
d
∏

i=1

{ŷai (1− ŷi)
c−a(1− xiŷi)

−b},
(64)

where ŷi is defined as

ŷi =
2a

√

τ2 − 4axi(c− b)− τ
, (65)

with τ = xi(b− a)− c, and

J2,1 =

d
∏

i=1

d
∏

j=i

{a(1− ŷi)(1− ŷj)+(c−a)ŷiŷj−bLiLj}, (66)

with

Li =
xiŷi(1− ŷi)

1− xiŷi
. (67)

The value of 2F1(a, b; c;X) at X = 0 is 1, that is,

2F1(a, b; c;0) = 1. As a result, the Laplace approximation

in (64) is calibrated at X = 0 to give the calibrated Laplace

approximation [33]:

2F̂1(a, b; c;X) =
2F̃1(a, b; c;X)

2F̃1(a, b; c;0)
= ccd−

d(d+1)
4 R

− 1
2

2,1

×
d
∏

i=1

{

(

ŷi

a

)a(
1− ŷi

c− a

)c−a

(1 − xiŷi)
−b

}

,

(68)
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where

R2,1 =

d
∏

i=1

d
∏

j=i

{

ŷiŷj

a
+

(1 − ŷi)(1 − ŷj)

c− a

− bxixj ŷiŷj(1− ŷi)(1 − ŷj)

(1− xiŷi)(1 − xj ŷj)a(c− a)

}

.

(69)

VIII. EXPERIMENTS

A. Synthetic datasets

We have considered a simulation setup and evaluated the

OBTL classifiers by the average classification error with

different joint prior densities modeling the relatedness of the

source and target domains. The setup is as follows. Unless

mentioned, the feature dimension is d = 10, the number of

classes in each domain is L = 2, the number of source training

data per class is ns = nl
s = 200, the number of target training

data per class is nt = nl
t = 10, ν = νl = 25, κt = κl

t = 100,

κs = κl
s = 100, for both the classes l = 1, 2, m1

t = 0d,

m2
t = 0.05× 1d, m1

s = m1
t +1d, and m2

s = m2
t + 1d, where

0d and 1d are d× 1 all-zero and all-one vectors, respectively.

For the scale matrices, we choose Ml
t = ktId, Ml

s = ksId,

and Ml
ts = ktsId for two classes l = 1, 2, where Id is the d×d

identity matrix. Note that choosing an identity matrix for Ml
ts

makes sense when the order of the features in the two domains

is the same. We have the constraint that the scale matrix

Ml =

(

M
l
t M

l
ts

M
l
ts

′

M
l
s

)

should be positive definite for any class l.

It is easy to check the following corresponding constraints on

kt, ks, and kts: kt > 0, ks > 0, and |kts| <
√
ktks. We define

kts = α
√
ktks, where |α| < 1. In this particular example,

the value of |α| shows the amount of relatedness between the

source and target domains. If |α| = 0, the two domains are not

related and if |α| is close to one, we have greater relatedness.

We set kt = ks = 1 and plot the average classification error

curves for different values of |α|. All the simulations assume

equal prior probabilities for the classes, so we use (49) and

(57) for the OBTL classifier and OBC, respectively.

We evaluate the prediction performance according to the

common evaluation procedure of Bayesian learning by average

classification errors. To sample from the prior (2) we first

sample from a Wishart distribution W2d(M
l, νl) to get a

sample for Λl =

(

Λ
l
t Λ

l
ts

Λ
l
ts

′

Λ
l
s

)

, for each class l = 1, 2, and

then pick (Λl
t,Λ

l
s), which is a joint sample from p(Λl

t,Λ
l
s)

in (16). Then given Λl
t and Λl

s, we sample from (3) to get

samples of µl
t and µl

s for l = 1, 2. Once we have µl
t, µ

l
s, Λl

t,

and Λl
s, we generate 100 different training and test sets from

(1). Training sets contain samples from both the target and

source domains, but the test set contains only samples from

the target domain. As the numbers of source and target training

data per class is ns and nt, there are Lns and Lnt source and

target training data in total, respectively. We assume the size of

the test set per class is 500 in the simulations, so 1000 in total.

For each training and test set, we use the OBTL and its target-

only version, OBC, and calculate the error. Then we average

all the errors for 100 different training and test sets. We further

repeat this whole process 100 times for different realizations

of Λl
t and Λl

s, µl
t, and µl

s for l = 1, 2, and finally average all
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Figure 2: (a) Average classification error versus the number of target training

data per class, nt, (b) Average classification error versus the number of source

training data per class, ns.

the errors and return the average classification error. Note that

in all figures, the hyperparameters used in the OBTL classifier

are the same as the ones used for simulating data, except for

the figures showing the sensitivity of the performance with

respect to different hyperparameters, in which case we assume

that true values of the hyperparameters used for simulating

data are unknown.

To examine how the source data improves the classifier

in target domain, we compare the performance of the OBTL

classifier with the OBC designed in the target domain alone.

The average classification error versus nt is depicted in Fig. 2a

for the OBC and OBTL with different values of α. When α is

close to one, the performance of the OBTL classifier is much

better than that of the OBC, this due to the greater relatedness

between the two domains and appropriate use of the source

data. This performance improvement is especially noticeable

when nt is small, which reflects the real-world scenario. In

Fig. 2a, we also observe that the errors of the OBTL classifier

and OBC are converging to a similar value when nt gets very

large, meaning that the source data are redundant when there is

a large amount of target data. When α is larger, the error curves

converge faster to the optimal error, which is the average Bayes

error of the target classifier. Recall that when α = 0, the OBTL

classifier reduces to the OBC. In this particular example, the

sign of α does not matter in the performance of the OBTL,

which can be verified by (44). Hence, we can use |α| in all

the cases.

Figure 2b depicts average classification error versus ns for

the OBC and OBTL with different values of α. The error of

the OBC is constant for all ns as it does not employ the source

data. The error of the OBTL classifier equals that of the OBC

when ns = 0 and starts to decrease as ns increases. In Fig.

2b when α is larger, the rate of improvement is greater since

the two domains are more related.

We investigate the sensitivity of the OBTL with respect to

the hyperparameters. Fig. 3 represents the average classifica-

tion error of the OBTL with respect to |α|, where we assume

that we do not know the true value αtrue of the amount of

relatedness between source and target domains. In Figs. 3a-

3d we plot the error curves when αtrue = 0.3, 0.5, 0.7, 0.9,

respectively. We observe several important trends in these

figures. First of all, the performance gain of the OBTL
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Figure 3: Average classification error vs |α|

towards the OBC depends heavily on the relatedness (value

of αtrue) of source and target and the value of α used in

the classifier. Generally speaking, there exists an αmax in

(0, 1) such that for |α| < αmax, the OBTL has a performance

gain towards the OBC, where maximum gain is achieved at

|α| = αtrue. Second, the performance gain is higher when

the two domains are highly related (Fig. 3d). Third, when

the two domains are very related, for example, αtrue = 0.9
in Fig. 3d, αmax = 1, meaning that for any |α|, the OBTL

has performance gain towards the target-only OBC. However,

when the source and target domains are not related much, like

Figs. 3a-3b, αmax < 1, and choosing |α| greater than αmax

leads to performance loss compared to the OBC. This means

that exaggeration in the amount of relatedness between the two

domains can hurt the transfer learning classifier when the two

domains are not actually related, which refers to the concept

of negative transfer.

Figure 4 shows the errors versus ν, assuming unknown true

value νtrue, for different values of α (0.5 and 0.9) and νtrue
(25 and 50). The salient point here is that the performance of

the OBTL classifier is not so sensitive to ν if it is chosen in

its allowable range, that is, ν ≥ 2d. In Fig. 4, the error of the

OBTL does not change much for ν ≥ 2d = 20. As a result,

we can choose any arbitrary ν ≥ 2d in real datasets without

worrying about critical performance deterioration.

Figure 5 depicts average classification error versus κt for

two different values of α (0.5 and 0.9), where the true value of

κt is κtrue = 50. Similar to ν, if κt is greater than a value (20
in Fig. 5), the performance does not change much. According

to (31), it is better to choose κl
t and κl

s to be proportional

to nt and ns, respectively, since the values of updated means

ml
t,n and ml

s,n are weighted averages of our prior knowledge

about means, ml
t and ml

s, and the sample means x̄l
t and x̄l

s.

Assuming that κt = βtnt and κs = βsns, for some βt, βs > 0,
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Figure 4: Average classification error vs ν
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Figure 5: Average classification error vs κt

if we have higher trust on our priors on means, we pick higher

βt and βs (like in Fig. 5); but for the untrustworthy priors, we

choose lower values for βt and βs.

Sensitivity results in Figs. 3, 4, and 5 reveal that in our

simulation setup the performance improvement of the OBTL

depends on the value of α and true relatedness (αtrue in

this example) between the two domains and is not affected

that much by the choices of other hyperparameters like ν,

κt, and κs. We could have a reasonable range of α to get

improved performance but the correct estimates of relatedness

or transferability are critical, which is an important future

research direction (see Conclusions in Section IX).

B. Real-world benchmark datasets

We test the OBTL classifier on Office [34] and Caltech256

[35] image datasets, which have been adopted to help bench-

mark different transfer learning algorithms in the literature. We

have used exactly the same evaluation setup and data splits of

MMDT (Max-Margin Domain Transform) [10].

• Office dataset: This dataset has images in three different

domains: amazon, webcam, and dslr. The dataset contains
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Table I: Semi-supervised accuracy for different source and target domains in the Office+Clatech256 dataset using SURF features. Domain names are denoted

as a: amazon, w: webcam, d: dslr, c: Caltech256. The numbers in red show the best accuracy and the numbers in blue show the second best accuracy in each

column. The results of the first six methods have been adopted from [17]. Similar to [17], we have also used the evaluation setup of [10] for the OBTL.

a → w a → d a → c w → a w → d w → c d → a d → w d → c c → a c → w c → d Mean

1-NN-t 34.5 33.6 19.7 29.5 35.9 18.9 27.1 33.4 18.6 29.2 33.5 34.1 29.0

SVM-t 63.7 57.2 32.2 46.0 56.5 29.7 45.3 62.1 32.0 45.1 60.2 56.3 48.9

HFA [9] 57.4 55.1 31.0 56.5 56.5 29.0 42.9 60.5 30.9 43.8 58.1 55.6 48.1

MMDT [10] 64.6 56. 7 36.4 47.7 67.0 32.2 46.9 74.1 34.1 49.4 63.8 56.5 52.5

CDLS [12] 68.7 60.4 35.3 51.8 60.7 33.5 50.7 68.5 34.9 50.9 66.3 59.8 53.5

ILS (1-NN) [17] 59.7 49.8 43.6 54.3 70.8 38.6 55.0 80.1 41.0 55.1 62.9 56.2 55.6

OBTL 72.3 60.8 43.1 55.0 75.8 38.1 54.3 85.2 40.6 54.7 70.6 61.4 59.3

Table II: The values of hyperparameters of the OBTL used in each experiment. nt and ns are based on the data splits provided by [10].

a → w a → d a → c w → a w → d w → c d → a d → w d → c c → a c → w c → d

nt 3 3 3 3 3 3 3 3 3 3 3 3

ns 20 20 20 8 8 8 8 8 8 8 8 8

βt 1 2 5 1 1 3 1 2 2 1 1 1

βs 1 2 5 1 1 3 1 2 2 1 1 1

kt 0.01 0.005 0.002 0.005 0.01 0.005 0.005 0.02 0.003 0.004 0.004 0.005

ks 0.01 0.004 0.002 0.005 0.01 0.005 0.005 0.02 0.003 0.004 0.004 0.005

α 0.7 0.6 0.99 0.9 0.99 0.99 0.99 0.99 0.99 0.8 0.8 0.7

31 classes including the office stuff like backpack, chair,

keyboard, etc. The three domains amazon, webcam, and dslr

contain images from Amazon’s website, a webcam, and a dig-

ital single-lens reflex (dslr) camera, respectively, with different

lighting and backgrounds. SURF [36] image features are used

in all the domains, which are of dimension 800.

• Office + Caltech256 dataset: This dataset has L = 10
common classes of both Office and Caltech256 datasets with

the same feature dimension d = 800. Accordingt to the data

splits of [10], the numbers of training data per class in the

source domain are ns = 20 for amazon and ns = 8 for the

other three domains, and in the target domain nt = 3 for all

the four domains. For this four-domain dataset, 20 random

train-test splits have been created by [10]. We run the OBTL

classifier on that 20 provided train-test splits and report the

average accuracy. Note that the test data are solely from the

target domains. Authors of MMDT [10] reduce the dimension

to d = 20 using PCA. We follow the same procedure for the

OBTL classifier.

Following the comparison framework of [17], which used

the same evaluation setup of [10], we compare the OBTL’s

performance in terms of accuracy (10-class) in Table 1

with two target-only classifiers and four state-of-the-art semi-

supervised transfer learning algorithms (including [17] itself).

The evaluation setup is exactly the same for the OBTL and all

the other six methods. As a result, we use the results of [17]

for the first six methods in Table 1 and compare them with

the OBTL classifier. The six methods are as follows.

• 1-NN-t and SVM-t: The Nearest Neighbor (1-NN) and

linear SVM classifiers designed using only the target data.

• HFA [9]: This Heterogeneous Feature Augmentation (HFA)

method learns a common latent space between source and

target domains using the max-margin approach and designs

a classifier in that common space.

• MMDT [10]: This Max-Margin Domain Transform

(MMDT) method learns a transformation between the source

and target domains and employs the weighted SVM for

classification.

• CDLS [12]: This Cross-Domain Landmark Selection

(CDLS) is a semi-supervised heterogeneous domain adaptation

method, which derives a domain-invariant feature space for

improved classification performance.

• ILS (1-NN) [17]: This is a recent method that learns

an Invariant Latent Space (ILS) to reduce the discrepancy

between the source and target domains and uses Riemannian

optimization techniques to match statistical properties between

samples projected into the latent space from different domains.

In Table 1, we have calculated the accuracy of the OBTL

classifier in 12 distinct experiments, where the source-target

pairs are different (source → target) in each experiment. We

have marked the best accuracy in each column with red and

the second best accuracy with blue. In 6 out of 12 cases, the

OBTL has the best accuracy. In the other 6 cases, the OBTL

has the second best accuracy, but its accuracy is very close to

the best accuracy. We have written the mean accuracy of each

method in the last column, which has been averaged over all

the 12 different experiments. The OBTL classifier has the best

mean accuracy and the ILS [17] has the second best accuracy

among all the methods.

• Hyperparameters of the OBTL: We assume the same

values of hyperparameters for all the 10 classes in each

domain, so we can drop the superscript l denoting the class

label. We set ν = 10d = 200 for all the experiments. We

choose α separately in each experiment since the relatedness

between distinct pairs of domains are different. For mt and

ms, we pool all the target and source data in all the 10 classes,

respectively, and use the sample means of the datasets. We

find reasonable values for kt, ks, α, βt (κt = βtnt), and βs

(κs = βsns) using a cross-validation method. We show the

values of those hyperparameters used in each experiment in

Table 2. We have assumed equal prior probabilities for all the

classes and used (49) for the OBTL classifier.
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IX. CONCLUSIONS AND FUTURE WORKS

We have constructed a Bayesian transfer learning framework

to tackle the semi-supervised and supervised transfer learning

problems. The proposed Optimal Bayesian Transfer Learning

(OBTL) classifier can deal with the lack of labeled data in the

target domain and is optimal in this new Bayesian framework

since it minimizes the expected classification error. We have

obtained the closed-form posterior distribution of the target

parameters and accordingly the closed-form effective class-

conditional densities in the target domain to define the OBTL

classifier. As the OBTL’s objective function consists of hyper-

geometric functions of matrix argument, we use the Laplace

approximations of those functions to derive a computationally

efficient and scalable OBTL classifier, while preserving its

superior performance. We have compared the performance

of the OBTL with its target-only version, OBC, to see how

transferring from source to target domain can help. We have

tested the OBTL classifier with real-world benchmark image

datasets and demonstrated its excellent performance compared

to other state-of-the-art domain adaption methods.

This paper considers a Gaussian model, in which we can

derive closed-form solutions, as the case with the OBC.

Since many practical problems cannot be approximated by

a Gaussian model, an important aspect of OBC development

has been the utilization of MCMC methods [37], [38]. These

can be naturally extended to the OBTL setting, albeit, with

greater computational burden.

We have only considered two domains in this paper, assum-

ing there is only one source domain. Having seen the good

performance of the OBTL classifier in two domains, in future

work, we are going to apply it to the multi-source transfer

learning problems, where we can benefit from the knowledge

of different related sources in order to further improve the

target classifier.

As in the case of the OBC, a basic engineering aspect

of the OBTL is prior construction. This has been studied

under different conditions in the context of the OBC: using

the data from unused features to infer a prior distribution

[39], deriving the prior distribution from models of the data-

generating technology [37], deriving the prior from the uncer-

tainties in the mathematical model characterizing the relevant

physical system [40], and applying constraints based on prior

knowledge to map the prior knowledge into a prior distribution

via optimization [41], [42], [43]. The latter methods are very

general and have been placed into a formal mathematical

structure in [43], where the prior results from an optimization

involving the Kullback-Leibler (KL) divergence constrained

by conditional probability statements characterizing physical

knowledge, such as genetic pathways in genomic medicine. A

key focus of our future work will be to extend this general

framework to the OBTL, which will require a formulation

that incorporates knowledge relating the source and target

domains. It should be emphasized that with optimal Bayesian

classification, as well as with optimal Bayesian filtering [44],

[45], [46], the prior distribution is not on the operator to be

designed (classifier or filter) but on the underlying scientific

model (feature-label distribution, covariance matrix, or obser-

vation model) for which the operator is optimized. It is for this

reason that uncertainty in the scientific model can be mapped

into a prior distribution based on physical laws.
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