-
-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy path_plotting.py
730 lines (631 loc) · 28.5 KB
/
_plotting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
import os
import re
import sys
import warnings
from colorsys import hls_to_rgb, rgb_to_hls
from itertools import cycle, combinations
from functools import partial
from typing import Callable, List, Union
import numpy as np
import pandas as pd
from bokeh.colors import RGB
from bokeh.colors.named import (
lime as BULL_COLOR,
tomato as BEAR_COLOR
)
from bokeh.plotting import figure as _figure
from bokeh.models import (
CrosshairTool,
CustomJS,
ColumnDataSource,
NumeralTickFormatter,
Span,
HoverTool,
Range1d,
DatetimeTickFormatter,
WheelZoomTool,
LinearColorMapper,
)
try:
from bokeh.models import CustomJSTickFormatter
except ImportError: # Bokeh < 3.0
from bokeh.models import FuncTickFormatter as CustomJSTickFormatter
from bokeh.io import output_notebook, output_file, show
from bokeh.io.state import curstate
from bokeh.layouts import gridplot
from bokeh.palettes import Category10
from bokeh.transform import factor_cmap
from backtesting._util import _data_period, _as_list, _Indicator
with open(os.path.join(os.path.dirname(__file__), 'autoscale_cb.js'),
encoding='utf-8') as _f:
_AUTOSCALE_JS_CALLBACK = _f.read()
IS_JUPYTER_NOTEBOOK = 'JPY_PARENT_PID' in os.environ
if IS_JUPYTER_NOTEBOOK:
warnings.warn('Jupyter Notebook detected. '
'Setting Bokeh output to notebook. '
'This may not work in Jupyter clients without JavaScript '
'support (e.g. PyCharm, Spyder IDE). '
'Reset with `backtesting.set_bokeh_output(notebook=False)`.')
output_notebook()
def set_bokeh_output(notebook=False):
"""
Set Bokeh to output either to a file or Jupyter notebook.
By default, Bokeh outputs to notebook if running from within
notebook was detected.
"""
global IS_JUPYTER_NOTEBOOK
IS_JUPYTER_NOTEBOOK = notebook
def _windos_safe_filename(filename):
if sys.platform.startswith('win'):
return re.sub(r'[^a-zA-Z0-9,_-]', '_', filename.replace('=', '-'))
return filename
def _bokeh_reset(filename=None):
curstate().reset()
if filename:
if not filename.endswith('.html'):
filename += '.html'
output_file(filename, title=filename)
elif IS_JUPYTER_NOTEBOOK:
curstate().output_notebook()
def colorgen():
yield from cycle(Category10[10])
def lightness(color, lightness=.94):
rgb = np.array([color.r, color.g, color.b]) / 255
h, _, s = rgb_to_hls(*rgb)
rgb = np.array(hls_to_rgb(h, lightness, s)) * 255
return RGB(*rgb)
_MAX_CANDLES = 10_000
def _maybe_resample_data(resample_rule, df, indicators, equity_data, trades):
if isinstance(resample_rule, str):
freq = resample_rule
else:
if resample_rule is False or len(df) <= _MAX_CANDLES:
return df, indicators, equity_data, trades
freq_minutes = pd.Series({
"1T": 1,
"5T": 5,
"10T": 10,
"15T": 15,
"30T": 30,
"1H": 60,
"2H": 60*2,
"4H": 60*4,
"8H": 60*8,
"1D": 60*24,
"1W": 60*24*7,
"1M": np.inf,
})
timespan = df.index[-1] - df.index[0]
require_minutes = (timespan / _MAX_CANDLES).total_seconds() // 60
freq = freq_minutes.where(freq_minutes >= require_minutes).first_valid_index()
warnings.warn(f"Data contains too many candlesticks to plot; downsampling to {freq!r}. "
"See `Backtest.plot(resample=...)`")
from .lib import OHLCV_AGG, TRADES_AGG, _EQUITY_AGG
df = df.resample(freq, label='right').agg(OHLCV_AGG).dropna()
indicators = [_Indicator(i.df.resample(freq, label='right').mean()
.dropna().reindex(df.index).values.T,
**dict(i._opts, name=i.name,
# Replace saved index with the resampled one
index=df.index))
for i in indicators]
assert not indicators or indicators[0].df.index.equals(df.index)
equity_data = equity_data.resample(freq, label='right').agg(_EQUITY_AGG).dropna(how='all')
assert equity_data.index.equals(df.index)
def _weighted_returns(s, trades=trades):
df = trades.loc[s.index]
return ((df['Size'].abs() * df['ReturnPct']) / df['Size'].abs().sum()).sum()
def _group_trades(column):
def f(s, new_index=pd.Index(df.index.view(int)), bars=trades[column]):
if s.size:
# Via int64 because on pandas recently broken datetime
mean_time = int(bars.loc[s.index].view(int).mean())
new_bar_idx = new_index.get_loc(mean_time, method='nearest')
return new_bar_idx
return f
if len(trades): # Avoid pandas "resampling on Int64 index" error
trades = trades.assign(count=1).resample(freq, on='ExitTime', label='right').agg(dict(
TRADES_AGG,
ReturnPct=_weighted_returns,
count='sum',
EntryBar=_group_trades('EntryTime'),
ExitBar=_group_trades('ExitTime'),
)).dropna()
return df, indicators, equity_data, trades
def plot(*, results: pd.Series,
df: pd.DataFrame,
indicators: List[_Indicator],
filename='', plot_width=None,
plot_equity=True, plot_return=False, plot_pl=True,
plot_volume=True, plot_drawdown=False,
smooth_equity=False, relative_equity=True,
superimpose=True, resample=True,
reverse_indicators=True,
show_legend=True, open_browser=True):
"""
Like much of GUI code everywhere, this is a mess.
"""
# We need to reset global Bokeh state, otherwise subsequent runs of
# plot() contain some previous run's cruft data (was noticed when
# TestPlot.test_file_size() test was failing).
if not filename and not IS_JUPYTER_NOTEBOOK:
filename = _windos_safe_filename(str(results._strategy))
_bokeh_reset(filename)
COLORS = [BEAR_COLOR, BULL_COLOR]
BAR_WIDTH = .8
assert df.index.equals(results['_equity_curve'].index)
equity_data = results['_equity_curve'].copy(deep=False)
trades = results['_trades']
plot_volume = plot_volume and not df.Volume.isnull().all()
plot_equity = plot_equity and not trades.empty
plot_return = plot_return and not trades.empty
plot_pl = plot_pl and not trades.empty
is_datetime_index = isinstance(df.index, pd.DatetimeIndex)
from .lib import OHLCV_AGG
# ohlc df may contain many columns. We're only interested in, and pass on to Bokeh, these
df = df[list(OHLCV_AGG.keys())].copy(deep=False)
# Limit data to max_candles
if is_datetime_index:
df, indicators, equity_data, trades = _maybe_resample_data(
resample, df, indicators, equity_data, trades)
df.index.name = None # Provides source name @index
df['datetime'] = df.index # Save original, maybe datetime index
df = df.reset_index(drop=True)
equity_data = equity_data.reset_index(drop=True)
index = df.index
new_bokeh_figure = partial(
_figure,
x_axis_type='linear',
width=plot_width,
height=400,
tools="xpan,xwheel_zoom,box_zoom,undo,redo,reset,save",
active_drag='xpan',
active_scroll='xwheel_zoom')
pad = (index[-1] - index[0]) / 20
fig_ohlc = new_bokeh_figure(
x_range=Range1d(index[0], index[-1],
min_interval=10,
bounds=(index[0] - pad,
index[-1] + pad)) if index.size > 1 else None)
figs_above_ohlc, figs_below_ohlc = [], []
source = ColumnDataSource(df)
source.add((df.Close >= df.Open).values.astype(np.uint8).astype(str), 'inc')
trade_source = ColumnDataSource(dict(
index=trades['ExitBar'],
datetime=trades['ExitTime'],
exit_price=trades['ExitPrice'],
size=trades['Size'],
returns_positive=(trades['ReturnPct'] > 0).astype(int).astype(str),
))
inc_cmap = factor_cmap('inc', COLORS, ['0', '1'])
cmap = factor_cmap('returns_positive', COLORS, ['0', '1'])
colors_darker = [lightness(BEAR_COLOR, .35),
lightness(BULL_COLOR, .35)]
trades_cmap = factor_cmap('returns_positive', colors_darker, ['0', '1'])
if is_datetime_index:
fig_ohlc.xaxis.formatter = CustomJSTickFormatter(
args=dict(axis=fig_ohlc.xaxis[0],
formatter=DatetimeTickFormatter(days=['%d %b', '%a %d'],
months=['%m/%Y', "%b'%y"]),
source=source),
code='''
this.labels = this.labels || formatter.doFormat(ticks
.map(i => source.data.datetime[i])
.filter(t => t !== undefined));
return this.labels[index] || "";
''')
NBSP = '\N{NBSP}' * 4
ohlc_extreme_values = df[['High', 'Low']].copy(deep=False)
ohlc_tooltips = [
('x, y', NBSP.join(('$index',
'$y{0,0.0[0000]}'))),
('OHLC', NBSP.join(('@Open{0,0.0[0000]}',
'@High{0,0.0[0000]}',
'@Low{0,0.0[0000]}',
'@Close{0,0.0[0000]}'))),
('Volume', '@Volume{0,0}')]
def new_indicator_figure(**kwargs):
kwargs.setdefault('height', 90)
fig = new_bokeh_figure(x_range=fig_ohlc.x_range,
active_scroll='xwheel_zoom',
active_drag='xpan',
**kwargs)
fig.xaxis.visible = False
fig.yaxis.minor_tick_line_color = None
return fig
def set_tooltips(fig, tooltips=(), vline=True, renderers=()):
tooltips = list(tooltips)
renderers = list(renderers)
if is_datetime_index:
formatters = {'@datetime': 'datetime'}
tooltips = [("Date", "@datetime{%c}")] + tooltips
else:
formatters = {}
tooltips = [("#", "@index")] + tooltips
fig.add_tools(HoverTool(
point_policy='follow_mouse',
renderers=renderers, formatters=formatters,
tooltips=tooltips, mode='vline' if vline else 'mouse'))
def _plot_equity_section(is_return=False):
"""Equity section"""
# Max DD Dur. line
equity = equity_data['Equity'].copy()
dd_end = equity_data['DrawdownDuration'].idxmax()
if np.isnan(dd_end):
dd_start = dd_end = equity.index[0]
else:
dd_start = equity[:dd_end].idxmax()
# If DD not extending into the future, get exact point of intersection with equity
if dd_end != equity.index[-1]:
dd_end = np.interp(equity[dd_start],
(equity[dd_end - 1], equity[dd_end]),
(dd_end - 1, dd_end))
if smooth_equity:
interest_points = pd.Index([
# Beginning and end
equity.index[0], equity.index[-1],
# Peak equity and peak DD
equity.idxmax(), equity_data['DrawdownPct'].idxmax(),
# Include max dd end points. Otherwise the MaxDD line looks amiss.
dd_start, int(dd_end), min(int(dd_end + 1), equity.size - 1),
])
select = pd.Index(trades['ExitBar']).union(interest_points)
select = select.unique().dropna()
equity = equity.iloc[select].reindex(equity.index)
equity.interpolate(inplace=True)
assert equity.index.equals(equity_data.index)
if relative_equity:
equity /= equity.iloc[0]
if is_return:
equity -= equity.iloc[0]
yaxis_label = 'Return' if is_return else 'Equity'
source_key = 'eq_return' if is_return else 'equity'
source.add(equity, source_key)
fig = new_indicator_figure(
y_axis_label=yaxis_label,
**({} if plot_drawdown else dict(height=110)))
# High-watermark drawdown dents
fig.patch('index', 'equity_dd',
source=ColumnDataSource(dict(
index=np.r_[index, index[::-1]],
equity_dd=np.r_[equity, equity.cummax()[::-1]]
)),
fill_color='#ffffea', line_color='#ffcb66')
# Equity line
r = fig.line('index', source_key, source=source, line_width=1.5, line_alpha=1)
if relative_equity:
tooltip_format = f'@{source_key}{{+0,0.[000]%}}'
tick_format = '0,0.[00]%'
legend_format = '{:,.0f}%'
else:
tooltip_format = f'@{source_key}{{$ 0,0}}'
tick_format = '$ 0.0 a'
legend_format = '${:,.0f}'
set_tooltips(fig, [(yaxis_label, tooltip_format)], renderers=[r])
fig.yaxis.formatter = NumeralTickFormatter(format=tick_format)
# Peaks
argmax = equity.idxmax()
fig.scatter(argmax, equity[argmax],
legend_label='Peak ({})'.format(
legend_format.format(equity[argmax] * (100 if relative_equity else 1))),
color='cyan', size=8)
fig.scatter(index[-1], equity.values[-1],
legend_label='Final ({})'.format(
legend_format.format(equity.iloc[-1] * (100 if relative_equity else 1))),
color='blue', size=8)
if not plot_drawdown:
drawdown = equity_data['DrawdownPct']
argmax = drawdown.idxmax()
fig.scatter(argmax, equity[argmax],
legend_label='Max Drawdown (-{:.1f}%)'.format(100 * drawdown[argmax]),
color='red', size=8)
dd_timedelta_label = df['datetime'].iloc[int(round(dd_end))] - df['datetime'].iloc[dd_start]
fig.line([dd_start, dd_end], equity.iloc[dd_start],
line_color='red', line_width=2,
legend_label=f'Max Dd Dur. ({dd_timedelta_label})'
.replace(' 00:00:00', '')
.replace('(0 days ', '('))
figs_above_ohlc.append(fig)
def _plot_drawdown_section():
"""Drawdown section"""
fig = new_indicator_figure(y_axis_label="Drawdown")
drawdown = equity_data['DrawdownPct']
argmax = drawdown.idxmax()
source.add(drawdown, 'drawdown')
r = fig.line('index', 'drawdown', source=source, line_width=1.3)
fig.scatter(argmax, drawdown[argmax],
legend_label='Peak (-{:.1f}%)'.format(100 * drawdown[argmax]),
color='red', size=8)
set_tooltips(fig, [('Drawdown', '@drawdown{-0.[0]%}')], renderers=[r])
fig.yaxis.formatter = NumeralTickFormatter(format="-0.[0]%")
return fig
def _plot_pl_section():
"""Profit/Loss markers section"""
fig = new_indicator_figure(y_axis_label="Profit / Loss")
fig.add_layout(Span(location=0, dimension='width', line_color='#666666',
line_dash='dashed', line_width=1))
returns_long = np.where(trades['Size'] > 0, trades['ReturnPct'], np.nan)
returns_short = np.where(trades['Size'] < 0, trades['ReturnPct'], np.nan)
size = trades['Size'].abs()
size = np.interp(size, (size.min(), size.max()), (8, 20))
trade_source.add(returns_long, 'returns_long')
trade_source.add(returns_short, 'returns_short')
trade_source.add(size, 'marker_size')
if 'count' in trades:
trade_source.add(trades['count'], 'count')
r1 = fig.scatter('index', 'returns_long', source=trade_source, fill_color=cmap,
marker='triangle', line_color='black', size='marker_size')
r2 = fig.scatter('index', 'returns_short', source=trade_source, fill_color=cmap,
marker='inverted_triangle', line_color='black', size='marker_size')
tooltips = [("Size", "@size{0,0}")]
if 'count' in trades:
tooltips.append(("Count", "@count{0,0}"))
set_tooltips(fig, tooltips + [("P/L", "@returns_long{+0.[000]%}")],
vline=False, renderers=[r1])
set_tooltips(fig, tooltips + [("P/L", "@returns_short{+0.[000]%}")],
vline=False, renderers=[r2])
fig.yaxis.formatter = NumeralTickFormatter(format="0.[00]%")
return fig
def _plot_volume_section():
"""Volume section"""
fig = new_indicator_figure(y_axis_label="Volume")
fig.xaxis.formatter = fig_ohlc.xaxis[0].formatter
fig.xaxis.visible = True
fig_ohlc.xaxis.visible = False # Show only Volume's xaxis
r = fig.vbar('index', BAR_WIDTH, 'Volume', source=source, color=inc_cmap)
set_tooltips(fig, [('Volume', '@Volume{0.00 a}')], renderers=[r])
fig.yaxis.formatter = NumeralTickFormatter(format="0 a")
return fig
def _plot_superimposed_ohlc():
"""Superimposed, downsampled vbars"""
time_resolution = pd.DatetimeIndex(df['datetime']).resolution
resample_rule = (superimpose if isinstance(superimpose, str) else
dict(day='M',
hour='D',
minute='H',
second='T',
millisecond='S').get(time_resolution))
if not resample_rule:
warnings.warn(
f"'Can't superimpose OHLC data with rule '{resample_rule}'"
f"(index datetime resolution: '{time_resolution}'). Skipping.",
stacklevel=4)
return
df2 = (df.assign(_width=1).set_index('datetime')
.resample(resample_rule, label='left')
.agg(dict(OHLCV_AGG, _width='count')))
# Check if resampling was downsampling; error on upsampling
orig_freq = _data_period(df['datetime'])
resample_freq = _data_period(df2.index)
if resample_freq < orig_freq:
raise ValueError('Invalid value for `superimpose`: Upsampling not supported.')
if resample_freq == orig_freq:
warnings.warn('Superimposed OHLC plot matches the original plot. Skipping.',
stacklevel=4)
return
df2.index = df2['_width'].cumsum().shift(1).fillna(0)
df2.index += df2['_width'] / 2 - .5
df2['_width'] -= .1 # Candles don't touch
df2['inc'] = (df2.Close >= df2.Open).astype(int).astype(str)
df2.index.name = None
source2 = ColumnDataSource(df2)
fig_ohlc.segment('index', 'High', 'index', 'Low', source=source2, color='#bbbbbb')
colors_lighter = [lightness(BEAR_COLOR, .92),
lightness(BULL_COLOR, .92)]
fig_ohlc.vbar('index', '_width', 'Open', 'Close', source=source2, line_color=None,
fill_color=factor_cmap('inc', colors_lighter, ['0', '1']))
def _plot_ohlc():
"""Main OHLC bars"""
fig_ohlc.segment('index', 'High', 'index', 'Low', source=source, color="black")
r = fig_ohlc.vbar('index', BAR_WIDTH, 'Open', 'Close', source=source,
line_color="black", fill_color=inc_cmap)
return r
def _plot_ohlc_trades():
"""Trade entry / exit markers on OHLC plot"""
trade_source.add(trades[['EntryBar', 'ExitBar']].values.tolist(), 'position_lines_xs')
trade_source.add(trades[['EntryPrice', 'ExitPrice']].values.tolist(), 'position_lines_ys')
fig_ohlc.multi_line(xs='position_lines_xs', ys='position_lines_ys',
source=trade_source, line_color=trades_cmap,
legend_label=f'Trades ({len(trades)})',
line_width=8, line_alpha=1, line_dash='dotted')
def _plot_indicators():
"""Strategy indicators"""
def _too_many_dims(value):
assert value.ndim >= 2
if value.ndim > 2:
warnings.warn(f"Can't plot indicators with >2D ('{value.name}')",
stacklevel=5)
return True
return False
class LegendStr(str):
# The legend string is such a string that only matches
# itself if it's the exact same object. This ensures
# legend items are listed separately even when they have the
# same string contents. Otherwise, Bokeh would always consider
# equal strings as one and the same legend item.
def __eq__(self, other):
return self is other
ohlc_colors = colorgen()
indicator_figs = []
for i, value in enumerate(indicators):
value = np.atleast_2d(value)
# Use .get()! A user might have assigned a Strategy.data-evolved
# _Array without Strategy.I()
if not value._opts.get('plot') or _too_many_dims(value):
continue
is_overlay = value._opts['overlay']
is_scatter = value._opts['scatter']
if is_overlay:
fig = fig_ohlc
else:
fig = new_indicator_figure()
indicator_figs.append(fig)
tooltips = []
colors = value._opts['color']
colors = colors and cycle(_as_list(colors)) or (
cycle([next(ohlc_colors)]) if is_overlay else colorgen())
legend_label = LegendStr(value.name)
for j, arr in enumerate(value, 1):
color = next(colors)
source_name = f'{legend_label}_{i}_{j}'
if arr.dtype == bool:
arr = arr.astype(int)
source.add(arr, source_name)
tooltips.append(f'@{{{source_name}}}{{0,0.0[0000]}}')
if is_overlay:
ohlc_extreme_values[source_name] = arr
if is_scatter:
fig.scatter(
'index', source_name, source=source,
legend_label=legend_label, color=color,
line_color='black', fill_alpha=.8,
marker='circle', radius=BAR_WIDTH / 2 * 1.5)
else:
fig.line(
'index', source_name, source=source,
legend_label=legend_label, line_color=color,
line_width=1.3)
else:
if is_scatter:
r = fig.scatter(
'index', source_name, source=source,
legend_label=LegendStr(legend_label), color=color,
marker='circle', radius=BAR_WIDTH / 2 * .9)
else:
r = fig.line(
'index', source_name, source=source,
legend_label=LegendStr(legend_label), line_color=color,
line_width=1.3)
# Add dashed centerline just because
mean = float(pd.Series(arr).mean())
if not np.isnan(mean) and (abs(mean) < .1 or
round(abs(mean), 1) == .5 or
round(abs(mean), -1) in (50, 100, 200)):
fig.add_layout(Span(location=float(mean), dimension='width',
line_color='#666666', line_dash='dashed',
line_width=.5))
if is_overlay:
ohlc_tooltips.append((legend_label, NBSP.join(tooltips)))
else:
set_tooltips(fig, [(legend_label, NBSP.join(tooltips))], vline=True, renderers=[r])
# If the sole indicator line on this figure,
# have the legend only contain text without the glyph
if len(value) == 1:
fig.legend.glyph_width = 0
return indicator_figs
# Construct figure ...
if plot_equity:
_plot_equity_section()
if plot_return:
_plot_equity_section(is_return=True)
if plot_drawdown:
figs_above_ohlc.append(_plot_drawdown_section())
if plot_pl:
figs_above_ohlc.append(_plot_pl_section())
if plot_volume:
fig_volume = _plot_volume_section()
figs_below_ohlc.append(fig_volume)
if superimpose and is_datetime_index:
_plot_superimposed_ohlc()
ohlc_bars = _plot_ohlc()
_plot_ohlc_trades()
indicator_figs = _plot_indicators()
if reverse_indicators:
indicator_figs = indicator_figs[::-1]
figs_below_ohlc.extend(indicator_figs)
set_tooltips(fig_ohlc, ohlc_tooltips, vline=True, renderers=[ohlc_bars])
source.add(ohlc_extreme_values.min(1), 'ohlc_low')
source.add(ohlc_extreme_values.max(1), 'ohlc_high')
custom_js_args = dict(ohlc_range=fig_ohlc.y_range,
source=source)
if plot_volume:
custom_js_args.update(volume_range=fig_volume.y_range)
fig_ohlc.x_range.js_on_change('end', CustomJS(args=custom_js_args,
code=_AUTOSCALE_JS_CALLBACK))
plots = figs_above_ohlc + [fig_ohlc] + figs_below_ohlc
linked_crosshair = CrosshairTool(dimensions='both')
for f in plots:
if f.legend:
f.legend.visible = show_legend
f.legend.location = 'top_left'
f.legend.border_line_width = 1
f.legend.border_line_color = '#333333'
f.legend.padding = 5
f.legend.spacing = 0
f.legend.margin = 0
f.legend.label_text_font_size = '8pt'
f.legend.click_policy = "hide"
f.min_border_left = 0
f.min_border_top = 3
f.min_border_bottom = 6
f.min_border_right = 10
f.outline_line_color = '#666666'
f.add_tools(linked_crosshair)
wheelzoom_tool = next(wz for wz in f.tools if isinstance(wz, WheelZoomTool))
wheelzoom_tool.maintain_focus = False
kwargs = {}
if plot_width is None:
kwargs['sizing_mode'] = 'stretch_width'
fig = gridplot(
plots,
ncols=1,
toolbar_location='right',
toolbar_options=dict(logo=None),
merge_tools=True,
**kwargs
)
show(fig, browser=None if open_browser else 'none')
return fig
def plot_heatmaps(heatmap: pd.Series, agg: Union[Callable, str], ncols: int,
filename: str = '', plot_width: int = 1200, open_browser: bool = True):
if not (isinstance(heatmap, pd.Series) and
isinstance(heatmap.index, pd.MultiIndex)):
raise ValueError('heatmap must be heatmap Series as returned by '
'`Backtest.optimize(..., return_heatmap=True)`')
_bokeh_reset(filename)
param_combinations = combinations(heatmap.index.names, 2)
dfs = [heatmap.groupby(list(dims)).agg(agg).to_frame(name='_Value')
for dims in param_combinations]
plots = []
cmap = LinearColorMapper(palette='Viridis256',
low=min(df.min().min() for df in dfs),
high=max(df.max().max() for df in dfs),
nan_color='white')
for df in dfs:
name1, name2 = df.index.names
level1 = df.index.levels[0].astype(str).tolist()
level2 = df.index.levels[1].astype(str).tolist()
df = df.reset_index()
df[name1] = df[name1].astype('str')
df[name2] = df[name2].astype('str')
fig = _figure(x_range=level1,
y_range=level2,
x_axis_label=name1,
y_axis_label=name2,
width=plot_width // ncols,
height=plot_width // ncols,
tools='box_zoom,reset,save',
tooltips=[(name1, '@' + name1),
(name2, '@' + name2),
('Value', '@_Value{0.[000]}')])
fig.grid.grid_line_color = None
fig.axis.axis_line_color = None
fig.axis.major_tick_line_color = None
fig.axis.major_label_standoff = 0
fig.rect(x=name1,
y=name2,
width=1,
height=1,
source=df,
line_color=None,
fill_color=dict(field='_Value',
transform=cmap))
plots.append(fig)
fig = gridplot(
plots,
ncols=ncols,
toolbar_options=dict(logo=None),
toolbar_location='above',
merge_tools=True,
)
show(fig, browser=None if open_browser else 'none')
return fig