-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathTimeWindow.py
112 lines (83 loc) · 3.61 KB
/
TimeWindow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
from sklearn.feature_extraction.text import TfidfVectorizer
from Segment import Segment
def tf_idf_sim(text1, text2):
try:
vectorizer = TfidfVectorizer()
tfidf = vectorizer.fit_transform([text1, text2])
return ((tfidf * tfidf.T).A)[0,1]
except:
return 0
class SubWindow:
time_frame_counter = 0 # static var
def __init__(self,segments, tweet_count):
"""
segments is dict of Segment class objects indexed by segment name ex. 'selena gomez'
tweet_count is number of tweets in this subwindow from which the segments are extracted
"""
SubWindow.time_frame_counter += 1
self.time_frame = SubWindow.time_frame_counter # unique time frame to each sub window starting from 1
self.segments = segments
self.tweet_count = tweet_count
def __str__(self):
result = 'SubWindow #'+str(self.time_frame)+', No. of Tweets: '+str(self.tweet_count)
return result
def get_tweets_containing_segment(self,segment):
return self.segments[segment].tweets
def get_freq_of_segment(self, segment):
return self.segments[segment].freq
def get_user_count_for_segment(self, segment):
return self.segments[segment].get_user_count()
########## END OF CLASS SubWindow ##########
class TimeWindow:
def __init__(self, initial_subwindows):
"""
initial_subwindows = list of SubWindow objects
"""
self.no_of_subwindows = len(initial_subwindows)
self.subwindows = initial_subwindows
self.start_frame = 1
self.end_frame = self.no_of_subwindows # time frame starting from 1
def __str__(self):
result = ''
result += '----- TimeWindow['+str(self.start_frame)+'-'+str(self.end_frame)+'] -----\n'
result += 'No. of Tweets: '+str(self.get_tweet_count())
for sw in self.subwindows: result += '\n'+sw.__str__()
return result
def get_tweet_count(self):
return sum([sw.tweet_count for sw in self.subwindows])
def get_segment_names(self):
segment_names = set()
for sw in self.subwindows:
for seg in sw.segments:
segment_names.add(seg)
return segment_names
def get_tweets_containing_segment(self, seg_name):
tweets = []
for sw in self.subwindows:
segment = sw.segments.get(seg_name,None)
if not segment == None:
tweets += segment.tweets
return tweets
def advance_window(self, next_subwindow):
print('Advancing Time Window')
self.subwindows = self.subwindows[1:]
self.subwindows.append(next_subwindow)
self.start_frame += 1
self.end_frame += 1
def get_segment_similarity(self, s1_name, s2_name):
"""
return similarity of 2 Segment names using TF-IDF similarity of their tweets
"""
s1_freq = 0 # total freq of segment 1 in time window
s2_freq = 0
similarity = 0
for sw in self.subwindows:
s1 = sw.segments.get(s1_name, None)
s2 = sw.segments.get(s2_name, None)
if not s1 == None: s1_freq += s1.freq
if not s2 == None: s2_freq += s2.freq
if s1 == None or s2 == None: continue
similarity += s1.freq * s2.freq * tf_idf_sim(' '.join(s1.tweets), ' '.join(s2.tweets))
similarity = similarity/(s1_freq * s2_freq)
return similarity
########## END OF CLASS TimeWindow ##########