-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathmain.py
76 lines (62 loc) · 2.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import os
from EventSegmentClusterer import get_events, get_seg_similarity
from TimeWindow import TimeWindow
from TwitterEventDetector import TwitterEventDetector
# Parameters
original_tweet_dir = 'data/original_tweets/' # end with '/'
clean_tweet_dir = 'data/cleaned_tweets/without_retweets/' # end with '/'
subwindow_dir = 'data/cleaned_tweets/without_retweets/2012-10-12/' # each file is a subwindow in this folder
event_output_dir = 'results/2012-10-12/'
wiki_titles_file = 'data/enwiki-titles-unstemmed.txt'
seg_prob_file = 'data/seg_prob_2012_Oct_11-22.json'
wiki_Qs_file = 'data/WikiQsEng_non_zero_processed.json'
remove_retweets = True
max_segment_length = 4
hashtag_wt = 3
entities_only = False # False --> use #tag and @name only for event detection
default_seg_prob = 0.0000001 # for unknown segments
use_retweet_count = True
use_followers_count = True
n_neighbors = 4
threshold = 4 # for news_worthiness
ted = TwitterEventDetector(wiki_titles_file, seg_prob_file, wiki_Qs_file, remove_retweets, max_segment_length,
hashtag_wt, use_retweet_count, use_followers_count, default_seg_prob, entities_only)
# Tweet Cleaning
#ted.clean_tweets_in_directory(original_tweet_dir, clean_tweet_dir)
# Segment tweets and create TimeWindow
print('\nReading SubWindows')
subwindow_files = [f.name for f in os.scandir(subwindow_dir) if f.is_file()]
subwindows = []
for subwindow_name in subwindow_files[:6]: # read timewindow consisting 6 subwindows of 1 hour each
print('SubWindow:',subwindow_name)
sw = ted.read_subwindow(subwindow_dir + subwindow_name)
subwindows.append(sw)
print('Done\n')
tw = TimeWindow(subwindows)
print(tw)
#next_subwindow = ted.read_subwindow(subwindow_dir + subwindow_files[7])
#tw.advance_window(next_subwindow)
#print(tw)
# Bursty Segment Extraction
print()
bursty_segment_weights, segment_newsworthiness = ted.bse.get_bursty_segments(tw)
seg_sim = get_seg_similarity(bursty_segment_weights, tw)
# Clustering Bursty Segments
events = get_events(bursty_segment_weights, segment_newsworthiness, seg_sim, n_neighbors)
# dump event clusters along with tweets[cleaned ones :-( ] associated with the segments in the cluster
print('\nEvents will be saved in', event_output_dir)
if not os.path.exists(event_output_dir):
os.makedirs(event_output_dir)
event_no = 0
for e, event_worthiness in events:
event_no += 1
print('\nEVENT:', event_no, 'News Worthiness:', event_worthiness)
f = open(event_output_dir + str(event_no) + '.txt', 'w')
f.write(str(e)+' '+str(event_worthiness)+'\n\n')
for seg_name in e:
print(seg_name)
f.write('SEGMENT:' + seg_name+'\n')
for text in set(tw.get_tweets_containing_segment(seg_name)):
f.write(text+'\n')
f.write('-----------------------------------------------------------\n')
f.close()