-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtishby.py
300 lines (205 loc) · 11.3 KB
/
tishby.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import Dataset
from tishby_net import Net
import argparse
import numpy as np
import pickle
from sklearn.utils import shuffle
def parse_arguments():
# arguments
parser = argparse.ArgumentParser()
parser.add_argument('--n_0', type=int, help='input dimension (X = T_0)', default=12)
parser.add_argument('--n_K', type=int, help='output dimension (T_K)', default=2)
parser.add_argument('--n_i', type=int, nargs='+', help='dimension of hidden layers', default=[10, 7, 5, 4, 3])
parser.add_argument('--sigma_z', type=float, help='sigma_z = sqrt(beta)', default=0.1)
parser.add_argument('--nonlinearity', type=str, help='network nonlinearity', default="tanh")
parser.add_argument('--leaky_slope', type=float, help='slope for Leaky_ReLU', default=0.01)
parser.add_argument('--max_epochs', type=int, help='maximum number of epochs', default=10000)
parser.add_argument('--ID', type=int, help='ID', default=0)
parser.add_argument('--orth_udpate_alpha', type=float, help='alpha for orth update on weights', default=-1.0)
parser.add_argument('--num_data_X', type=int, help='# of X samples to use in saturation estim', default=1024)
parser.add_argument('--num_replicas', type=int, help='number of generated samples for each x in X', default=100)
parser.add_argument('--num_subsampled_epochs', type=int, help='number of subsampled epochs from max_epochs', default=100)
parser.add_argument('--save_layer_data', type=int, help='save layer data', default=1)
parser.add_argument('--save_trained', type=int, help='save trained model?', default=1)
parser.add_argument('--shuffle_labels', type=int, help='shuffle labels?', default=0)
parser.add_argument('--data_location', type=str, help='location of data', default='./datasets/IB_data.npz')
args_tmp = parser.parse_known_args()
if args_tmp[0].save_trained:
pickle.dump(vars(args_tmp[0]), open('./saved/tishby_args_' + str(args_tmp[0].ID) + '.pkl', 'wb'))
parser.add_argument('--lr', type=float, help='learning rate', default=0.0004)
parser.add_argument('--batch_size', type=int, help='batch size', default=256)
parser.add_argument('--summary', type=str, help='summary path', default='./summary/')
parser.add_argument('--saved_model_path', type=str, help='location of saved models', default='./saved/')
parser.add_argument('--save_evaluation', type=int, help='save train/test evaluations?', default=1)
args = parser.parse_args()
# number of layers K (total = K+1)
args.K = len(args.n_i) + 1
return args
# Tishby Dataset
class TishbyDataset(Dataset):
def __init__(self, Dtype, args, uniform_sample=False):
data = np.load(args.data_location)
if Dtype == 'train':
self.X, self.y = data['X_train'], data['y_train']
if args.shuffle_labels:
self.y = shuffle(self.y, random_state=0)
elif Dtype == 'test':
self.X, self.y = data['X_test'], data['y_test']
# ALL: train + test
else:
self.X, self.y = np.concatenate([data['X_train'], data['X_test']], axis=0), np.concatenate([data['y_train'], data['y_test']])
if args.shuffle_labels:
self.y = shuffle(self.y, random_state=0)
if uniform_sample:
r_ind = np.random.randint(0, len(self.y), len(self.y))
self.X = self.X[r_ind, :]
self.y = self.y[r_ind]
def __len__(self):
return len(self.y)
def __getitem__(self, ind):
return (self.X[ind, :], self.y[ind])
def run_test(model, criterion, loaders):
model.eval()
# run a test loop
loss = 0
correct = 0
for data, target in loaders['test_loader']:
data, target = Variable(data.type(torch.FloatTensor), volatile=True).cuda(), Variable(target.type(torch.LongTensor)).cuda()
net_out = model(data)
# sum up batch loss
loss += criterion(net_out, target).data[0]
pred = net_out.data.max(1)[1] # get the index of the max log-probability
correct += pred.eq(target.data).sum()
test_loss = loss / len(loaders['test_loader'].dataset)
model.train()
return test_loss, correct
def evaluate(model, criterion, loaders, use_eval=True):
if use_eval:
model.eval()
# evaluate on test set
loss = 0
correct_test = 0
for data, target in loaders['test_loader']:
data, target = Variable(data.type(torch.FloatTensor), volatile=True).cuda(), Variable(target.type(torch.LongTensor)).cuda()
net_out = model(data)
# sum up batch loss
loss += criterion(net_out, target).data[0]
pred = net_out.data.max(1)[1] # get the index of the max log-probability
correct_test += pred.eq(target.data).sum()
test_loss = loss / len(loaders['test_loader'].dataset)
correct_test /= len(loaders['test_loader'].dataset)
# evaluate on train set
loss = 0
correct_train = 0
for data, target in loaders['train_loader']:
data, target = Variable(data.type(torch.FloatTensor), volatile=True).cuda(), Variable(target.type(torch.LongTensor)).cuda()
net_out = model(data)
# sum up batch loss
loss += criterion(net_out, target).data[0]
pred = net_out.data.max(1)[1] # get the index of the max log-probability
correct_train += pred.eq(target.data).sum()
train_loss = loss / len(loaders['train_loader'].dataset)
correct_train /= len(loaders['train_loader'].dataset)
if use_eval:
model.train()
return train_loss, test_loss, correct_train, correct_test
def run_train(model, optimizer, criterion, args, loaders, epoch_subsample, all_dataset):
model.train()
Train = []; Test = []; Ctrain = []; Ctest = []
# ------------------- Prepare to save data ----------------------------
if args.save_layer_data:
layer_data = [np.array([])] * args.K
for ind in range(args.K - 1):
layer_data[ind] = np.zeros((len(epoch_subsample), args.num_data_X, args.n_i[ind], args.num_replicas))
layer_data[-1] = np.zeros((len(epoch_subsample), args.num_data_X, args.n_K, args.num_replicas))
model.prepare_layer_data_saving(args.num_data_X, args.num_replicas)
# ---------------------------------------------------------------------
for epoch in range(args.max_epochs):
# --------------------- Train -------------------------------------
for _, (data, target) in enumerate(loaders['train_loader']):
data, target = Variable(data.type(torch.FloatTensor)).cuda(), Variable(target.type(torch.LongTensor)).cuda()
optimizer.zero_grad()
net_out = model(data)
loss = criterion(net_out, target)
# normalize loss because "criterion" has size_average=False
loss = loss / target.size()[0]
loss.backward()
optimizer.step()
if args.orth_udpate_alpha > 0:
model.orthWeightUpdate(args.orth_udpate_alpha)
print('Train Epoch: {} \t Last batch loss: {:.6f}'.format(epoch, loss.data[0]))
if epoch in epoch_subsample:
# ------------------ evaluation (deterministic, noiseless) --------
if args.save_evaluation:
tr, te, ctr, cte = evaluate(model, criterion, loaders, use_eval=True)
Train.append(tr); Test.append(te); Ctrain.append(ctr); Ctest.append(cte)
# ------------------- save layer data -----------------------------
if args.save_layer_data:
for replica in range(args.num_replicas):
# reset counter
model.ind_samples_start = 0
for _, (data, _) in enumerate(loaders['all_loader']):
data = Variable(data.type(torch.FloatTensor)).cuda()
model(data, save_layer_vals=1, ind_replica=replica)
if model.ind_samples_start == args.num_data_X:
break
ep_ind = np.nonzero(epoch_subsample == epoch)[0][0]
for ind in range(args.K):
layer_data[ind][ep_ind, :, :, :] = model.layer_values[ind]
# -------------------- save model ---------------------------------
if args.save_trained:
torch.save(model.state_dict(), args.saved_model_path + 'modelTishby_' + str(args.ID) + '_ep_' + str(epoch) + '.pt')
if args.save_evaluation:
pickle.dump({'Train': Train, 'Test': Test, 'Ctrain': Ctrain, 'Ctest': Ctest}, open(args.saved_model_path + 'modelTishby_' + str(args.ID) + '_eval.p', 'wb'), protocol = 4)
if args.save_layer_data:
pickle.dump({'data': layer_data, 'y': all_dataset.y}, open(args.saved_model_path + 'modelTishby_' + str(args.ID) + '_layer_data.p', 'wb'), protocol = 4)
def main():
args = parse_arguments()
# ------------------- Data Loaders -----------------
train_dataset = TishbyDataset('train', args)
test_dataset = TishbyDataset('test', args)
all_dataset = TishbyDataset('all', args)
loaders = {}
loaders['train_loader'] = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=5,
pin_memory=True)
loaders['test_loader'] = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=args.batch_size,
shuffle=False,
num_workers=5,
pin_memory=True)
loaders['all_loader'] = torch.utils.data.DataLoader(dataset=all_dataset,
batch_size=args.batch_size,
shuffle=False,
num_workers=5,
pin_memory=True)
# -------------------------------------------------
if args.nonlinearity == "tanh":
nonlinearity = F.tanh
elif args.nonlinearity == "relu":
nonlinearity = F.relu
elif args.nonlinearity == "lrelu":
nonlinearity = nn.LeakyReLU(args.leaky_slope)
elif args.nonlinearity == "lin":
nonlinearity = None
else:
assert (False)
epoch_subsample = np.unique(np.round(np.logspace(np.log10(1), np.log10(args.max_epochs - 1), num=args.num_subsampled_epochs, endpoint=True)).astype(int))
model = Net(args.n_0, args.n_i, args.n_K, args.K, args.sigma_z, nonlinearity)
model.cuda()
criterion = nn.CrossEntropyLoss(size_average=False).cuda()
# create an optimizer
optimizer = optim.Adam(model.parameters(), lr=args.lr)
run_train(model, optimizer, criterion, args, loaders, epoch_subsample, all_dataset)
test_loss, correct = run_test(model, criterion, loaders)
Ntest = len(loaders['test_loader'].dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(test_loss, correct, Ntest, 100.*correct/Ntest))
if __name__ == "__main__":
main()