-
Notifications
You must be signed in to change notification settings - Fork 11
/
test.py
634 lines (523 loc) · 27 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
import os
import time
import copy
import argparse
import math
import numpy as np
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.nn.functional as F
import utils
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
ee = 1e-8
MAX_DIST = 127
def harmonic_mean(a, b): return 2.*a*b/(a+b) if a > 0. and b > 0. else 0.
class Identity(nn.Module):
def forward(self, x):
return x
def test(work_name, data_loader, model, T, opts, save_path, start_time=time.time()):
model.eval()
if opts.test_data_norm:
novel_biases = np.concatenate([-(2.**np.arange(4.,-3.-ee,-1.)),
np.arange(-0.1,0.2+ee,0.002),
2.**np.arange(-2.,4.+ee,1.)])
else:
novel_biases = np.concatenate([-(2.**np.arange(4.,2.-ee,-1.)),
np.arange(-2.5,5.+ee,0.05),
2.**np.arange(3.,4.+ee,1.)])
num_leaves = len(T['wnids_leaf'])
num_classes = len(T['wnids'])
num_labels = len(T['label_hnd']) # len(T['wnids_leaf']) + len(T['wnids_novel'])
num_pts = novel_biases.shape[0]
classes = {'known': np.arange(num_leaves),
'novel': np.arange(num_leaves, num_labels),
'super': np.arange(num_leaves, num_classes)}
dtypes = ['val'] if work_name == 'val' else ['known', 'novel']
hierarchical_measure = T.get('dist_mat') is not None
counters = init_counters(num_pts, num_classes if work_name == 'val' else num_labels, hierarchical_measure)
results = init_results(num_pts, None, hierarchical_measure)
labels = {'known': [], 'novel': []}
preds = {'known': [], 'novel': []}
novel_classes = torch.LongTensor(np.arange(num_leaves, num_classes))
if opts.gpu: novel_classes = novel_classes.cuda()
for dtype in dtypes:
num_data = len(data_loader[dtype].dataset)
labels[dtype] = -np.ones(num_data, dtype=int)
preds[dtype] = -np.ones([num_pts, num_data], dtype=int)
for i, (inputs, targets) in enumerate(data_loader[dtype]):
inputs = Variable(inputs, volatile=True)
if opts.gpu: inputs, targets = inputs.cuda(), targets.cuda()
logits = model(inputs)
pos = i*opts.batch_size
labels[dtype][pos:pos+targets.size(0)] = targets.cpu().numpy()
for b, novel_bias in enumerate(novel_biases):
# flatten prediction
logits_biased = logits.clone()
logits_biased[:, novel_classes] += novel_bias
preds_ = logits_biased.max(dim=1)[1].data.cpu().numpy()
preds[dtype][b, pos:pos+targets.size(0)] = preds_
if work_name == 'val':
# known performance evaluation with full taxonomy
count_test(b, counters, preds_, targets, T, hierarchical_measure)
# novel performance evaluation with deficient taxonomy
count_val(b, counters, logits_biased, targets, T, opts.gpu, hierarchical_measure)
else:
# performance evaluation with full taxonomy
count_test(b, counters, preds_, targets, T, hierarchical_measure)
# print('{dtype} eval {time:8.3f} s'.format(dtype=dtype, time=time.time()-start_time))
# acc
counters_to_results(counters, results, classes)
results_to_guarantee(results, novel_biases, opts.known_guarantee)
print_results(work_name, results, save_path, hierarchical_measure, start_time)
if opts.save_results:
counters['novel_biases'] = novel_biases
results['novel_biases'] = novel_biases
preds['novel_biases'] = novel_biases
np.save('{save_path}_{work_name}_counters.npy'.format(save_path=save_path, work_name=work_name), counters)
np.save('{save_path}_{work_name}_results.npy'.format(save_path=save_path, work_name=work_name), results)
np.save('{save_path}_{work_name}_preds_all.npy'.format(save_path=save_path, work_name=work_name), preds)
if work_name == 'test':
np.save('{save_path}_{work_name}_labels.npy'.format(save_path=save_path, work_name=work_name), labels)
preds_opt = {'known': preds['known'][results['acc']['loc']], 'novel': preds['novel'][results['acc']['loc']]}
np.save('{save_path}_{work_name}_preds.npy'.format(save_path=save_path, work_name=work_name), preds_opt)
def val_td(data_loader, model, T, opts, save_path, start_time=time.time()):
model.eval()
work_name = 'val'
ths = np.concatenate([[0.], 2.**np.arange(-10,2.+ee,.5)])
num_leaves = len(T['wnids_leaf'])
num_classes = len(T['wnids'])
num_labels = len(T['label_hnd']) # len(T['wnids_leaf']) + len(T['wnids_novel'])
num_pts = ths.shape[0]
classes = {'known': np.arange(num_leaves), 'novel': np.arange(num_leaves, num_labels)}
dtypes = ['val']
num_models = len(model)
num_children = T['num_children']
multi_inds = T['multi_inds']
classifiable = T['classifiable']
hierarchical_measure = T.get('dist_mat') is not None
counters = init_counters(num_pts, num_children, hierarchical_measure)
results = init_results(num_pts, num_models, hierarchical_measure)
for dtype in dtypes:
for i, (inputs, targets) in enumerate(data_loader[dtype]):
inputs = Variable(inputs, volatile=True)
if opts.gpu: inputs, targets = inputs.cuda(), targets.cuda()
logits = [[]]*num_models
kld_u = [[]]*num_models
for m, sub in enumerate(model):
# filter classifiable labels
b_relevant = torch.zeros(targets.size(), out=torch.ByteTensor())
if opts.gpu: b_relevant = b_relevant.cuda()
for k in classifiable[m]:
b_relevant |= (targets == k)
if not b_relevant.any(): continue
relevant = b_relevant.nonzero().view(-1)
relevant_labels = targets[relevant].cpu().numpy()
# feedforward
logits[m] = sub(inputs[relevant])
if opts.test_relu: logits[m] = F.relu(logits[m])
if opts.test_data_norm: logits[m] = F.normalize(logits[m], p=2, dim=1)
kld_u[m] = - math.log(num_children[m]) \
- F.log_softmax(logits[m], dim=1).data.sum(dim=1) / num_children[m]
logits[m] = logits[m].data.cpu().numpy()
kld_u[m] = kld_u[m].cpu().numpy()
for t, th in enumerate(ths):
# prediction in super class
b_conf = kld_u[m] > th
# assert (kld_u[m] > -1e-4).all(), 'some kld negative'
preds_ = -1*np.ones_like(relevant_labels)
if b_conf.any():
preds_[b_conf] = logits[m][b_conf].argmax(axis=1)
# performance evaluation
count_super(t, m, counters, preds_, relevant_labels, multi_inds[m])
# print('{dtype} eval {time:8.3f} s'.format(dtype=dtype, time=time.time()-start_time))
counters_to_results_super(counters, results, ths, num_models)
print_results_super(work_name, results, save_path, start_time)
if opts.save_results:
counters['ths'] = ths
results['ths'] = ths
np.save('{save_path}_{work_name}_counters.npy'.format(save_path=save_path, work_name=work_name), counters)
np.save('{save_path}_{work_name}_results.npy'.format(save_path=save_path, work_name=work_name), results)
return results['ths_opt']
def test_td(ths_opt, data_loader, model, T, opts, save_path, start_time=time.time()):
model.eval()
work_name = 'test'
num_leaves = len(T['wnids_leaf'])
num_classes = len(T['wnids'])
num_labels = len(T['label_hnd']) # len(T['wnids_leaf']) + len(T['wnids_novel'])
classes = {'known': np.arange(num_leaves), 'novel': np.arange(num_leaves, num_labels)}
dtypes = ['known', 'novel']
num_models = len(model)
num_children = T['num_children']
children = [np.array(ch) for ch in T['children']]
root = T['root']
if not isinstance(ths_opt, (np.ndarray, list)):
ths_opt = ths_opt*np.ones(num_models)
hierarchical_measure = T.get('dist_mat') is not None
counters = init_counters(1, num_labels, hierarchical_measure)
results = init_results(1, None, hierarchical_measure)
labels = {'known': [], 'novel': []}
preds = {'known': [], 'novel': []}
cls_order = [root]
m = 0
while m < len(cls_order):
for ch in children[cls_order[m]]:
if ch >= num_leaves and ch not in cls_order:
cls_order.append(ch)
m += 1
assert len(cls_order) == num_models, 'some classes are unvisitable'
for dtype in dtypes:
num_data = len(data_loader[dtype].dataset)
labels[dtype] = -np.ones(num_data, dtype=int)
preds[dtype] = -np.ones(num_data, dtype=int)
for i, (inputs, targets) in enumerate(data_loader[dtype]):
inputs = Variable(inputs, volatile=True)
if opts.gpu: inputs, targets = inputs.cuda(), targets.cuda()
pos = i*opts.batch_size
labels[dtype][pos:pos+targets.size(0)] = targets.cpu().numpy()
logits = [[]]*num_models
kld_u = [[]]*num_models
# feedforward
for m, sub in enumerate(model):
logits[m] = sub(inputs)
if opts.test_relu: logits[m] = F.relu(logits[m])
if opts.test_data_norm: logits[m] = F.normalize(logits[m], p=2, dim=1)
kld_u[m] = - math.log(num_children[m]) \
- F.log_softmax(logits[m], dim=1).data.sum(dim=1) / num_children[m]
logits[m] = logits[m].data.cpu().numpy()
kld_u[m] = kld_u[m].cpu().numpy()
# top-down prediction
preds_ = root*np.ones_like(targets.cpu().numpy())
for k in cls_order:
b_relevant = (preds_ == k)
if not b_relevant.any(): continue
m = k - num_leaves
b_conf = kld_u[m][b_relevant] > ths_opt[m]
# assert (kld_u[m][b_relevant] > -1e-4).all(), 'some kld negative'
if not b_conf.any(): continue
relevant = b_relevant.nonzero()[0][b_conf]
preds_[relevant] = children[k][logits[m][relevant].argmax(axis=1)]
preds[dtype][pos:pos+targets.size(0)] = preds_
# performance evaluation with full taxonomy
count_test(0, counters, preds_, targets, T, hierarchical_measure)
# print('{dtype} eval {time:8.3f} s'.format(dtype=dtype, time=time.time()-start_time))
# acc
counters_to_results(counters, results, classes)
results_to_guarantee(results, [ths_opt[0]], opts.known_guarantee)
print_results(work_name, results, save_path, hierarchical_measure, start_time)
if opts.save_results:
counters['ths'] = ths_opt
results['ths'] = ths_opt
preds['ths'] = ths_opt
np.save('{save_path}_{work_name}_counters.npy'.format(save_path=save_path, work_name=work_name), counters)
np.save('{save_path}_{work_name}_results.npy'.format(save_path=save_path, work_name=work_name), results)
np.save('{save_path}_{work_name}_preds_all.npy'.format(save_path=save_path, work_name=work_name), preds)
if work_name == 'test':
np.save('{save_path}_{work_name}_labels.npy'.format(save_path=save_path, work_name=work_name), labels)
preds_opt = {'known': preds['known'][results['acc']['loc']], 'novel': preds['novel'][results['acc']['loc']]}
np.save('{save_path}_{work_name}_preds.npy'.format(save_path=save_path, work_name=work_name), preds_opt)
def init_results(num_pts, num_classes=None, hierarchical_measure=False):
if num_classes is None:
acc_float = np.zeros(num_pts, dtype=float)
auc_float = 0.
else:
acc_float = np.zeros([num_pts, num_classes], dtype=float)
auc_float = np.zeros(num_classes, dtype=float)
acc = {'known': acc_float, 'novel' : copy.deepcopy(acc_float),
'harmonic': copy.deepcopy(acc_float),
'auc' : auc_float, 'g_bias': copy.deepcopy(auc_float),
'g_known': copy.deepcopy(auc_float), 'g_novel': copy.deepcopy(auc_float),
'g_harmonic': copy.deepcopy(auc_float),
}
results = {'acc': acc}
if hierarchical_measure:
results.update({'HP': copy.deepcopy(acc), 'HR': copy.deepcopy(acc),
'HF': copy.deepcopy(acc), 'HE': copy.deepcopy(acc),
})
return results
def init_counters(num_pts, num_classes, hierarchical_measure=False):
# top-down val
if isinstance(num_classes, list):
counter_data = np.array( [np.zeros(num_ch+1, dtype=int) for num_ch in num_classes])
counter_int = np.array([[np.zeros(num_ch+1, dtype=int) for num_ch in num_classes]
for _ in range(num_pts)])
counter_float = np.array([[np.zeros(num_ch+1, dtype=float) for num_ch in num_classes]
for _ in range(num_pts)])
# top-down test or flatten
else:
counter_data = np.zeros(num_classes, dtype=int)
counter_int = np.zeros([num_pts, num_classes], dtype=int)
counter_float = np.zeros([num_pts, num_classes], dtype=float)
counters = {'data': counter_data, 'acc' : counter_int}
if hierarchical_measure:
counters.update({'HP': counter_float, 'HR': copy.deepcopy(counter_float),
'HF': copy.deepcopy(counter_float), 'HE': copy.deepcopy(counter_int),
})
return counters
def count_val(p, counters, logits, labels, T, gpu, hierarchical_measure=False):
num_leaves = len(T['wnids_leaf'])
num_classes = len(T['wnids'])
num_supers = num_classes - num_leaves
descendants = T['descendants']
ch_slice = T['ch_slice']
relevant = T['relevant']
if hierarchical_measure:
HP_mat = T['HP_mat']
HF_mat = T['HF_mat']
dist_mat = T['dist_mat']
for m in range(num_supers):
c = m + num_leaves
for i in range(ch_slice[m], ch_slice[m+1]):
# filter classifiable labels
classify_me = torch.zeros(labels.size(), out=torch.ByteTensor())
if gpu: classify_me = classify_me.cuda()
for k in descendants[c]:
classify_me |= (labels == k)
if not classify_me.any(): continue
loc = torch.LongTensor(relevant[i])
if gpu: loc = loc.cuda()
preds_c = logits[classify_me.nonzero().view(-1)][:, loc].max(dim=1)[1].data.cpu().numpy()
acc = (preds_c == 0) # 0-th label is GT
if hierarchical_measure:
HP = HP_mat[relevant[i][preds_c], relevant[i][0]]
HR = HP_mat[relevant[i][0], relevant[i][preds_c]]
HF = HF_mat[relevant[i][preds_c], relevant[i][0]]
HE = dist_mat[relevant[i][preds_c], relevant[i][0]]
if p == 0: counters['data'][c] += preds_c.shape[0]
counters['acc'][p,c] += acc.sum()
if hierarchical_measure:
counters['HP'][p,c] += HP.sum()
counters['HR'][p,c] += HR.sum()
counters['HF'][p,c] += HF.sum()
counters['HE'][p,c] += HE.sum()
def count_test(p, counters, preds, labels, T, hierarchical_measure=False):
label_hnd = T['label_hnd']
if hierarchical_measure:
HP_mat = T['HP_mat']
HF_mat = T['HF_mat']
dist_mat = T['dist_mat']
for l in np.unique(labels.cpu().numpy()):
preds_l = preds[(labels == int(l)).cpu().numpy().astype(bool)]
acc = np.zeros_like(preds_l, dtype=bool)
if hierarchical_measure:
HE = MAX_DIST*np.ones_like(preds_l, dtype=int)
HP, HR, HF = np.zeros_like(preds_l), np.zeros_like(preds_l), np.zeros_like(preds_l)
for c in label_hnd[l]:
acc |= (preds_l == c)
if hierarchical_measure:
HE = np.minimum(HE, dist_mat[preds_l, c])
HP = np.maximum(HP, HP_mat[preds_l, c])
HR = np.maximum(HR, HP_mat[c, preds_l])
HF = np.maximum(HF, HF_mat[preds_l, c])
if p == 0: counters['data'][l] += preds_l.shape[0]
counters['acc'][p,l] += acc.sum()
if hierarchical_measure:
counters['HE'][p,l] += HE.sum()
counters['HP'][p,l] += HP.sum()
counters['HR'][p,l] += HR.sum()
counters['HF'][p,l] += HF.sum()
def count_super(p, m, counters, preds, labels, label_to_ch):
for l in np.unique(labels):
preds_l = preds[labels == l]
# in -> known
if label_to_ch[l]:
acc = np.zeros_like(preds_l, dtype=bool)
for c in label_to_ch[l]:
if p == 0: counters['data'][m][c] += preds_l.shape[0]
acc |= (preds_l == c)
acc_sum = acc.sum()
for c in label_to_ch[l]:
counters['acc'][p,m][c] += acc_sum
# out -> novel
else:
if p == 0: counters['data'][m][-1] += preds_l.shape[0]
acc_sum = (preds_l < 0).sum()
counters['acc'][p,m][-1] += acc_sum
def counters_to_results(counters, results, classes, label_hnd=None):
nonempty = (counters['data'] > 0).nonzero()[0]
testable = dict()
for dtype in ['known', 'novel']:
testable[dtype] = classes[dtype][np.isin(classes[dtype], nonempty)]
if label_hnd is None:
num_data = dict()
for dtype in ['known', 'novel']:
num_data[dtype] = counters['data'][testable[dtype]]
else:
label_hnd_inv = dict()
for dtype in ['known', 'novel']:
for l in testable[dtype]:
for c in label_hnd[l]:
if label_hnd_inv.get(c) is None:
label_hnd_inv[c] = [l]
else:
label_hnd_inv[c].append(l)
for mtype in results:
# acc
for dtype in ['known', 'novel']:
for p in range(results[mtype][dtype].shape[0]):
if label_hnd is None: # leaf-wise
results[mtype][dtype][p] = (counters[mtype][p][testable[dtype]] / num_data[dtype]).mean()
else: # super-wise; del
dtype_ = 'super' if dtype == 'novel' else dtype
num_classes_testable = 0
for c in classes[dtype_]:
if label_hnd_inv.get(c) is not None:
num_classes_testable += 1
l = label_hnd_inv[c]
results[mtype][dtype][p] += (counters[mtype][p][l] / counters['data'][l]).mean()
results[mtype][dtype][p] /= num_classes_testable
# harmonic acc
for p in range(results[mtype]['harmonic'].shape[0]):
results[mtype]['harmonic'][p] = harmonic_mean(results[mtype]['known'][p],
results[mtype]['novel'][p])
# AUC
y = np.concatenate([[0.], results[mtype]['novel'],
[results[mtype]['novel'][-1]]])
x = np.concatenate([[results[mtype]['known'][0]],
results[mtype]['known'], [0.]])
results[mtype]['auc'] = -np.trapz(y,x);
def counters_to_results_super(counters, results, pts, num_models):
num_pts = pts.shape[0]
for m in range(num_models):
b_known_testable = counters['data'][m] > 0
b_novel_testable = b_known_testable[-1]
b_known_testable[-1] = False
b_known_testable_any = b_known_testable.any()
for p in range(num_pts):
if b_known_testable_any:
# results['acc']['known'][p,m] = \
# (counters['acc'][p,m][b_known_testable] / counters['data'][m][b_known_testable]).mean()
results['acc']['known'][p,m] = counters['acc'][p,m][:-1].sum() / counters['data'][m][:-1].sum()
if b_novel_testable:
results['acc']['novel'][p,m] = counters['acc'][p,m][-1] / counters['data'][m][-1]
if b_known_testable_any and b_novel_testable:
results['acc']['harmonic'][p,m] = harmonic_mean(results['acc']['known'][p,m],
results['acc']['novel'][p,m])
elif b_known_testable_any:
results['acc']['harmonic'][p,m] = results['acc']['known'][p,m]
elif b_novel_testable:
results['acc']['harmonic'][p,m] = results['acc']['novel'][p,m]
# find optimal points
i_opt = {'global': 0, 'local': []}
results['acc_opt'] = {'global': {'known': [], 'novel': [], 'harmonic': []},
'local' : {'known': [], 'novel': [], 'harmonic': []}}
results['ths_opt'] = {'global': 0., 'local': []}
i_opt['global'] = results['acc']['harmonic'].mean(axis=1).argmax(axis=0)
i_opt['local'] = results['acc']['harmonic'].argmax(axis=0)
for mtype in ['known', 'novel', 'harmonic']:
results['acc_opt']['global'][mtype] = results['acc'][mtype][i_opt['global']]
results['acc_opt']['local'][mtype] = results['acc'][mtype][i_opt['local'], range(num_models)]
results['ths_opt']['global'] = pts[i_opt['global']]
results['ths_opt']['local'] = pts[i_opt['local']]
def results_to_guarantee(results, pts, kg):
# novel bias increasing -> known acc decreasing
loc = np.abs(results['acc']['known'] - kg).argmin()
closest = results['acc']['known'][loc]
if closest < kg:
locs = np.array([max(loc-1, 0), loc])
elif closest == kg:
locs = np.array([loc, loc])
else:
locs = np.array([loc, min(loc+1, results['acc']['known'].shape[0]-1)])
# linear interpolation
x = results['acc']['known'][locs]
if x[0] == x[1]:
for mtype in results:
results[mtype]['g_known'] = results[mtype]['known'][loc]
results[mtype]['g_novel'] = results[mtype]['novel'][loc]
results[mtype]['g_harmonic'] = results[mtype]['harmonic'][loc]
results['acc']['g_bias'] = pts[loc]
else:
for mtype in results:
y = results[mtype]['known'][locs]
results[mtype]['g_known'] = (kg-x[0])*(y[1]-y[0])/(x[1]-x[0])+y[0]
y = results[mtype]['novel'][locs]
results[mtype]['g_novel'] = (kg-x[0])*(y[1]-y[0])/(x[1]-x[0])+y[0]
y = results[mtype]['harmonic'][locs]
results[mtype]['g_harmonic'] = (kg-x[0])*(y[1]-y[0])/(x[1]-x[0])+y[0]
y = pts[locs]
results['acc']['g_bias'] = (kg-x[0])*(y[1]-y[0])/(x[1]-x[0])+y[0]
results['acc']['loc'] = loc
def print_results(work_name, results, save_path, hierarchical_measure=False, start_time=time.time()):
if hierarchical_measure:
mtypes = ['acc', 'HF']
else:
mtypes = ['acc']
print(save_path)
print('{work_name}; '.format(work_name=work_name), end='')
print('{time:8.3f} s'.format(time=time.time()-start_time))
for m, mtype in enumerate(mtypes):
print('bias: {res:7.4f}; '.format(res=results['acc']['g_bias']), end='')
print('{mtype:4s}'.format(mtype=mtype), end='')
print('known: {res:5.2f}; '.format(res=results[mtype]['g_known']*100.), end='')
print('novel: {res:5.2f}; '.format(res=results[mtype]['g_novel']*100.), end='')
if mtype == 'acc':
print('auc : {res:5.2f}; '.format(res=results[mtype]['auc']*100.))
else:
print('hmean: {res:5.2f}; '.format(res=results[mtype]['g_harmonic']*100.))
# plot known vs. novel
plt.figure(m)
plt.plot(results[mtype]['known'], results[mtype]['novel'], 'k.-')
if mtype == 'HE':
plt.xticks(np.arange(0., 11., 1.))
plt.yticks(np.arange(0., 11., 1.))
plt.axis([0., 10., 0., 10.])
else:
plt.xticks(np.arange(0., 1.1, .1))
plt.yticks(np.arange(0., 1.1, .1))
plt.axis([0., 1., 0., 1.])
plt.grid()
plt.xlabel('known class accuracy')
plt.ylabel('novel class accuracy')
plt.title('known: {res:5.2f}; '.format(res=results[mtype]['g_known']*100.) + \
'novel: {res:5.2f}; '.format(res=results[mtype]['g_novel']*100.) + \
'hmean: {res:5.2f}; '.format(res=results[mtype]['g_harmonic']*100.) + \
'auc : {res:5.2f}; '.format(res=results[mtype]['auc']*100.)
)
plt.savefig(save_path + '_' + work_name + '_' + mtype + '.png')
plt.clf()
plt.close()
def print_results_super(work_name, results, save_path, start_time=time.time()):
print(save_path)
print('{work_name}; '.format(work_name=work_name), end='')
print('global th: {th:6.4f}; '.format(th=results['ths_opt']['global']), end='')
print('{time:8.3f} s'.format(time=time.time()-start_time))
for ran in ['global', 'local']:
ran_short = 'glb' if ran == 'global' else 'loc'
print('{ran} acc '.format(ran=ran_short), end='')
print('known: {known:5.2f}; '.format(known=results['acc_opt'][ran]['known'].mean()*100.), end='')
print('novel: {novel:5.2f}; '.format(novel=results['acc_opt'][ran]['novel'].mean()*100.), end='')
print('hmean: {harmonic:5.2f}'.format(harmonic=results['acc_opt'][ran]['harmonic'].mean()*100.))
if __name__ == '__main__':
opts = argparse.Namespace()
opts.gpu = True
opts.dataset = 'ImageNet' #'ImageNet' #'AWA2' #'CUB'
opts.cnn = 'resnet101'
opts.test_relu = False
opts.test_data_norm = False
opts.workers = 0
opts.batch_size = 5000 if opts.dataset == 'ImageNet' else 0
opts.num_epochs = 50 if opts.dataset == 'ImageNet' else 5000
opts.known_guarantee = 0.5
opts.darts_path = 'train_darts/{dataset}/{cnn}'.format(dataset=opts.dataset, cnn=opts.cnn)
opts.save_results = False
if opts.dataset == 'AWA2':
acc_guarantees = [99]
else:
acc_guarantees = [90]
# acc_guarantees = [80, 85, 90, 95, 99]
start_time = time.time()
T = np.load('taxonomy/{dataset}/taxonomy.npy'.format(dataset=opts.dataset)).item()
utils.update_taxonomy('LOO', T, -1, start_time)
identity = Identity()
for ag in acc_guarantees:
# data loader
dtypes = ['val', 'known', 'novel']
opts.ag = ag
data_loader = utils.get_feature_loader(dtypes, opts, start_time)
save_path = '{darts_path}/{ag:.2f}'.format(darts_path=opts.darts_path, ag=ag/100.)
print(save_path)
test('val', data_loader, identity, T, opts, save_path, start_time)
test('test', data_loader, identity, T, opts, save_path, start_time)