-
Notifications
You must be signed in to change notification settings - Fork 11
/
utils.py
408 lines (356 loc) · 19 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
import os
import time
import copy
import argparse
import scipy.io as sio
import h5py
import numpy as np
import torch
from torch.autograd import Variable
import torch.utils.data
import torch.backends.cudnn
import torchvision.transforms as transforms
import cnns, folder, samplers
def extract_features(dtypes, opts, start_time=time.time()):
cnn = cnns.__dict__[opts.cnn](pretrained=True)
if opts.gpu:
cnn = torch.nn.DataParallel(cnn).cuda()
torch.backends.cudnn.benchmark = True
cnn.eval()
for dtype in dtypes:
path = 'datasets/{dataset}'.format(dataset=opts.dataset)
data_path = '{path}/{cnn}_{dtype}.h5'.format(path=path, cnn=opts.cnn, dtype=dtype)
if not os.path.isfile(data_path):
# dataset
dataset = folder.StaticImageFolder(dataset=opts.dataset, dtype=dtype,
transform=transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]))
num_data = len(dataset)
labels_ = np.array([dataset.imgs[k][1] for k in range(num_data)])
# data loader
data_loader = torch.utils.data.DataLoader(
dataset, batch_size=opts.batch_size, shuffle=False,
num_workers=opts.workers, pin_memory=True)
print('{dtype}; data loader; '.format(dtype=dtype), end='')
print('{time:8.3f} s'.format(time=time.time()-start_time))
# feature extraction
data_dim = 2048 # feature dimension before softmax
data = torch.zeros(num_data, data_dim)
labels = torch.zeros(num_data, out=torch.LongTensor())
for i, (inputs, targets) in enumerate(data_loader):
pos = i*opts.batch_size
inputs = Variable(inputs.cuda(), volatile=True) if opts.gpu else Variable(inputs, volatile=True)
data[pos:pos+inputs.size(0)] = cnn(inputs).data.cpu()
labels[pos:pos+targets.size(0)] = targets
print('{dtype}; '.format(dtype=dtype), end='')
print('{pos:7d}/{num_data:7d} i; '.format(pos=pos, num_data=num_data), end='')
print('{time:8.3f} s'.format(time=time.time()-start_time))
data = data.numpy()
labels = labels.numpy()
# sanity check
print('{dtype}; '.format(dtype=dtype), end='')
print('order of image path and data {consistency}consistent; ' \
.format(consistency='' if (labels_ == labels).all() else 'not '), end='')
print('{time:8.3f} s'.format(time=time.time()-start_time))
# save
with h5py.File(data_path, 'w') as f:
f.create_dataset('data', data=data, compression='gzip', compression_opts=9)
f.create_dataset('labels', data=labels, compression='gzip', compression_opts=9)
print('{dtype}; {time:8.3f} s'.format(dtype=dtype, time=time.time()-start_time))
def get_feature_loader(dtypes, opts, start_time=time.time()):
data_loader = dict()
for dtype in dtypes:
data_path = 'datasets/{dataset}/{cnn}_{dtype}.h5'.format(dataset=opts.dataset, cnn=opts.cnn, dtype=dtype)
with h5py.File(data_path, 'r') as f:
if ('darts_path' in opts) and ('ag' in opts):
darts_path = '{darts_path}/{dtype}_{ag:.2f}.mat' \
.format(darts_path=opts.darts_path, dtype=dtype, ag=opts.ag/100.)
inputs = torch.from_numpy(h5py.File(darts_path, 'r')['expected_rewards'][:]).t()
else:
inputs = torch.from_numpy(f['data'][:])
targets = torch.from_numpy(f['labels'][:])
dataset = torch.utils.data.TensorDataset(inputs, targets)
if opts.batch_size > 0: # mini-batch
if dtype == 'train':
batch_size = 1
path = 'datasets/{dataset}'.format(dataset=opts.dataset)
batch_sampler = samplers.BalancedRandomBatchSampler(
dataset, batch_size=opts.batch_size,
num_epochs=opts.num_epochs,
balance=(opts.batch_size >= 5*targets.max()), path=path)
else:
batch_size = min(opts.batch_size*10, len(dataset))
batch_sampler = None
else: # full-batch
batch_size = len(dataset)
batch_sampler = None
data_loader[dtype] = torch.utils.data.DataLoader(
dataset, batch_size=batch_size, batch_sampler=batch_sampler,
num_workers=opts.workers, pin_memory=True)
print('{dtype} data_loader; {time:8.3f} s'.format(dtype=dtype, time=time.time()-start_time))
return data_loader
def relabel(rate, labels, T, num_epochs=50, path=None, start_time=time.time()):
relabels_path = '{path}/relabels_{rate:d}.h5'.format(path=path, rate=rate)
relabel_rate = rate / 100.
if path is not None and os.path.isfile(relabels_path):
with h5py.File(relabels_path, 'r') as f:
relabels = f['relabels'][:]
else:
num_data = len(labels)
num_leaves = len(T['wnids_leaf'])
parents = T['parents']
descendants = T['descendants']
relabels = np.zeros([num_epochs, num_data], dtype=int)
for epoch in range(num_epochs):
relabels[epoch] = labels.numpy()
visited = set()
unvisited = list(range(num_leaves))
while unvisited:
k = unvisited[0]
unvisited = unvisited[1:]
descendants_proper_k = set(descendants[k])
descendants_proper_k.discard(k)
if visited.intersection(descendants_proper_k) == set(descendants_proper_k):
if len(parents[k]) == 0:
visited.add(k)
continue
num_data_k = (relabels[epoch] == k).sum()
relabel_me = (relabels[epoch] == k).nonzero()[0][np.random.rand(num_data_k) < relabel_rate]
rands = np.random.rand(len(relabel_me))
num_parents_k = len(parents[k])
for i in range(num_parents_k):
relabels[epoch][relabel_me[(rands >= i/num_parents_k) & \
(rands <= (i+1)/num_parents_k)]] = parents[k][i]
if parents[k][i] not in unvisited:
unvisited.append(parents[k][i])
visited.add(k)
else:
unvisited.append(k)
assert visited.intersection(unvisited) == set(), 'revisit ' + str(visited.intersection(unvisited))
print_freq = min([100, (num_epochs-1) // 5 + 1])
print_me = (epoch == 0 or epoch == num_epochs-1 or (epoch+1) % print_freq == 0)
if print_me:
print('{epoch:4d}/{num_epochs:4d} e; '.format(epoch=epoch+1, num_epochs=num_epochs), end='')
print('generate relabel {rate:2d}%; {time:8.3f} s'.format(rate=rate, time=time.time()-start_time))
if path is not None:
with h5py.File(relabels_path, 'w') as f:
f.create_dataset('relabels', data=relabels, compression='gzip', compression_opts=9)
print('relabel {rate:2d}%; {time:8.3f} s'.format(rate=rate, time=time.time()-start_time))
return torch.from_numpy(relabels)
def relabel_batch(rate, labels, T):
root = T['root']
parents = T['parents']
relabel_rate = rate / 100.
relabels = labels.clone()
relabel_me = (relabels != root)
while relabel_me.sum():
relabel_me &= (torch.rand(relabels.size(0)) < relabel_rate)
for i in relabel_me.nonzero().view(-1):
k = relabels[i]
if len(parents[k]) == 0:
relabel_me[i] = False
elif len(parents[k]) == 1:
relabels[i] = parents[k][0]
else:
relabels[i] = parents[k][int(torch.rand(1)*len(parents[k]))]
return relabels
def update_taxonomy(method, T, radius=-1, start_time=time.time()):
num_leaves = len(T['wnids_leaf'])
num_classes = len(T['wnids'])
num_supers = num_classes - num_leaves
children = T['children']
is_ancestor_mat = T['is_ancestor_mat']
num_children = T['num_children']
ch_slice = T['ch_slice']
if ('LOO' in method) or ('RLB' in method):
relevant = [[]]*ch_slice[-1]
labels_relevant = np.zeros([num_classes, ch_slice[-1]], dtype=bool)
for k in range(num_leaves, num_classes):
m = k - num_leaves
for i_ch, ch in enumerate(children[k]):
non_de = ~is_ancestor_mat[ch]
non_de[k] = False
relevant[ch_slice[m]+i_ch] = np.concatenate([[k], non_de.nonzero()[0]], axis=0)
labels_relevant[:, ch_slice[m]+i_ch] = ~non_de
# in models.LOOLoss, filter training data with "labels_relevant", gather scores with "relevant"
# relevant: for train & val
# relevant[ch_slice[m]+i_ch] = [target, {exclusive,}]
# (i_ch)-th child of the (m)-th super class is considered as a positive class (= target)
# leaves under the (m)-th super class exclusive to the target are considered as negative classes
T['relevant'] = relevant
# labels_relevant: for train
# labels_relevant[k, ch_slice[m]+i_ch] = True if the (k)-th class is under the positive class
# len(relevant[j]) + labels_relevant[:, j].sum() == num_classes + 1
T['labels_relevant'] = labels_relevant
elif method == 'TD':
# In ImageNet ILSVRC 2012 1k, num_regu[-1] == num_regu[12]
if radius >= 0:
if 'dist_mat' not in T:
raise AssertionError('dist_mat is missing; build detailed taxonomy')
dist_mat = T['dist_mat']
multi_inds = [[[] for _ in range(num_classes)] for _ in range(num_supers)]
labels_ch = -np.ones([num_classes, ch_slice[-1]], dtype=int)
labels_in = np.zeros([num_classes, num_supers], dtype=bool)
labels_out = np.zeros([num_classes, num_supers], dtype=bool)
classifiable = [[]]*num_supers
num_regu = np.zeros(num_supers, dtype=int)
for k in range(num_leaves, num_classes):
m = k - num_leaves
for i_ch, ch in enumerate(children[k]):
for de in is_ancestor_mat[ch].nonzero()[0]:
multi_inds[m][de].append(i_ch)
labels_ch[:, ch_slice[m]+i_ch] = i_ch*is_ancestor_mat[ch].astype(int) \
- (~is_ancestor_mat[ch]).astype(int)
labels_in[:,m] = is_ancestor_mat[k]
# labels_in[k,m] = False # if out regularizes k
if radius == -1:
b_regu_out = ~is_ancestor_mat[k]
# b_regu_out[k] = True # if out regularizes k
classifiable[m] = list(range(num_classes))
else:
b_regu_an = is_ancestor_mat[:,k] & (dist_mat[k] <= radius) # ancestors within (radius)
b_regu_out = ~is_ancestor_mat[k] & is_ancestor_mat[b_regu_an].any(axis=0)
# b_regu_out[k] = True # if out regularizes k
classifiable[m] = (is_ancestor_mat[k] | b_regu_out).nonzero()[0].tolist()
labels_out[:,m] = b_regu_out
num_regu[m] = b_regu_out[:num_leaves].sum()
# multi_inds, classifiable: for val
# multi_inds[m][k] = [{i_ch,}] are true labels of the (k)-th class at the (m)-th super class
T['multi_inds'] = multi_inds
# classifiable[m] = [{k,}] are labels under the ancestors of the (m)-th super class within (radius)
# classifiable[m] = range(num_classes) for all m if radius == -1
T['classifiable'] = classifiable
# labels_ch, labels_in, labels_out: for train
# labels_ch[k, ch_slice[m]+i_ch] = i_ch if k is under the (i_ch)-th child of the (m)-th super class; else -1
T['labels_ch'] = labels_ch
# labels_in[k,m] = True if k is under the (m)-th super class
T['labels_in'] = labels_in
# labels_out[k,m] = True if k is not under the (m)-th super class
# but under the ancestors of the (m)-th super class within (radius)
# (labels_in + labels_out).all() = True if radius == -1
T['labels_out'] = labels_out
# num_regu: not used
# num_regu[m] is the number of leaves in labels_out[m]
T['num_regu'] = num_regu
elif method == 'ZSL':
root = T['root']
label_zsl = T['label_zsl']
multi_probs = np.zeros([ch_slice[-1], num_classes])
multi_probs_class = np.zeros([num_classes, num_classes])
multi_probs_class[root] = 1.
for k in range(num_leaves, num_classes):
m = k - num_leaves
num_belong = np.sum(is_ancestor_mat[children[k]], axis=0)
b_belong = num_belong > 0 # b_belong == is_ancestor_mat[k] except b_belong[k]
num_belong[num_belong == 0] = 1
multi_probs[ch_slice[m]:ch_slice[m+1]] = multi_probs_class[children[k]] = \
b_belong * is_ancestor_mat[children[k]] / num_belong[None, :] + ~b_belong / num_children[m]
multi_probs = multi_probs.T
multi_probs_class = multi_probs_class.T
# ideal output probabilities; see Appendix D.1
T['multi_probs'] = multi_probs
T['multi_probs_class'] = multi_probs_class
T['att'] = multi_probs[label_zsl, :] # for DAG
T['attr'] = multi_probs_class[label_zsl, :] # for tree
else:
print('no taxonomy update; unidentifiable method: {method}'.format(method=method))
print('taxonomy for {method}; {time:8.3f} s'.format(method=method, time=time.time()-start_time))
def get_path(opts):
path = 'train/{dataset}/{cnn}/{method}/' \
.format(dataset=opts.dataset, cnn=opts.cnn, method=opts.method)
if 'TD+' in opts.method:
path += '{td_name}/'.format(td_name=opts.td_name)
if not os.path.isdir(path):
os.makedirs(path)
path += '{method}_'.format(method=opts.method)
if opts.method == 'TD':
path += '{param:d}_'.format(param=opts.radius)
path += '{param:.0e}_'.format(param=opts.ex_smooth)
elif 'RLB' in opts.method:
path += '{param:d}_'.format(param=opts.relabel)
elif 'LOO' in opts.method:
path += '{param:.0e}_'.format(param=opts.loo)
path += '{param:.0e}_'.format(param=opts.label_smooth)
if opts.num_layers > 0:
if opts.no_last_relu:
path += 'l{num_layers:d}n_'.format(num_layers=opts.num_layers)
else:
path += 'l{num_layers:d}_'.format(num_layers=opts.num_layers)
if opts.novel_score and opts.method == 'TD':
path += 'ns_'
if opts.class_wise and opts.method in ['TD', 'LOO', 'TD+LOO']:
path += 'cw_'
if opts.test_relu and ('TD+' in opts.method):
path += 'relu_'
if 'TD+' in opts.method:
path += '{param}_'.format(param=opts.softmax)
path += '{wd:.0e}_{lr:.0e}'.format(wd=opts.wd, lr=opts.lr)
return path
def load_model(model, optimizer, scheduler, path, num_epochs, start_time=time.time()):
epoch = num_epochs
while epoch > 0 and not os.path.isfile('{path}_model_{epoch:d}.pth'.format(path=path, epoch=epoch)):
epoch -= 1
if epoch > 0:
model_path = '{path}_model_{epoch:d}.pth'.format(path=path, epoch=epoch)
model_state_dict = torch.load('{path}_model_{epoch:d}.pth'.format(path=path, epoch=epoch))
model.load_state_dict(model_state_dict)
if optimizer is not None:
optimizer_state_dict = torch.load('{path}_optimizer_{epoch:d}.pth'.format(path=path, epoch=epoch))
optimizer.load_state_dict(optimizer_state_dict)
if scheduler is not None:
scheduler_state_dict = torch.load('{path}_scheduler_{epoch:d}.pth'.format(path=path, epoch=epoch))
scheduler.best = scheduler_state_dict['best']
scheduler.cooldown_counter = scheduler_state_dict['cooldown_counter']
scheduler.num_bad_epochs = scheduler_state_dict['num_bad_epochs']
scheduler.last_epoch = scheduler_state_dict['last_epoch']
print('{epoch:4d}/{num_epochs:4d} e; '.format(epoch=epoch, num_epochs=num_epochs), end='')
print('load {path}; '.format(path=model_path), end='')
print('{time:8.3f} s'.format(time=time.time()-start_time))
return epoch
def save_model(model, optimizer, scheduler, path, epoch, num_epochs, prev_epoch=0, start_time=time.time()):
model_state_dict = copy.deepcopy(model).cpu().state_dict()
model_path = '{path}_model_{epoch:d}.pth'.format(path=path, epoch=epoch)
torch.save(model_state_dict, model_path)
if optimizer is not None:
optimizer_state_dict = optimizer.state_dict()
optimizer_path = '{path}_optimizer_{epoch:d}.pth'.format(path=path, epoch=epoch)
torch.save(optimizer_state_dict, optimizer_path)
if scheduler is not None:
scheduler_state_dict = {'best': scheduler.best,
'cooldown_counter': scheduler.cooldown_counter,
'num_bad_epochs': scheduler.num_bad_epochs,
'last_epoch': scheduler.last_epoch}
scheduler_path = '{path}_scheduler_{epoch:d}.pth'.format(path=path, epoch=epoch)
torch.save(scheduler_state_dict, scheduler_path)
print('{epoch:4d}/{num_epochs:4d} e; '.format(epoch=epoch, num_epochs=num_epochs), end='')
print('save {path}; '.format(path=model_path), end='')
print('{time:8.3f} s'.format(time=time.time()-start_time))
# remove previous model
if prev_epoch > 0:
prev_model_path = '{path}_model_{epoch:d}.pth'.format(path=path, epoch=prev_epoch)
if os.path.isfile(prev_model_path):
os.remove(prev_model_path)
prev_optimizer_path = '{path}_optimizer_{epoch:d}.pth'.format(path=path, epoch=prev_epoch)
if os.path.isfile(prev_optimizer_path):
os.remove(prev_optimizer_path)
prev_scheduler_path = '{path}_scheduler_{epoch:d}.pth'.format(path=path, epoch=prev_epoch)
if os.path.isfile(prev_scheduler_path):
os.remove(prev_scheduler_path)
print('{epoch:4d}/{num_epochs:4d} e; '.format(epoch=epoch, num_epochs=num_epochs), end='')
print('remove {path}; '.format(path=prev_model_path), end='')
print('{time:8.3f} s'.format(time=time.time()-start_time))
if __name__ == '__main__':
opts = argparse.Namespace()
opts.gpu = True
opts.workers = 8
opts.dataset = 'ImageNet'
opts.cnn = 'resnet101'
opts.batch_size = 256
print(opts)
start_time = time.time()
dtypes = ['train', 'val', 'known', 'novel']
extract_features(dtypes, opts, start_time)