forked from gmum/few-shot-hypernets-public
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_regression.py
46 lines (38 loc) · 1.17 KB
/
train_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import os
import numpy as np
import torch
import backbone
import configs
from io_utils import parse_args_regression
from methods.DKT_regression import DKT
from methods.feature_transfer_regression import FeatureTransfer
params = parse_args_regression("train_regression")
np.random.seed(params.seed)
torch.manual_seed(params.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
params.checkpoint_dir = "%scheckpoints/%s/" % (configs.save_dir, params.dataset)
if not os.path.isdir(params.checkpoint_dir):
os.makedirs(params.checkpoint_dir)
params.checkpoint_dir = "%scheckpoints/%s/%s_%s" % (
configs.save_dir,
params.dataset,
params.model,
params.method,
)
bb = backbone.Conv3()
if params.method == "DKT":
model = DKT(bb)
elif params.method == "transfer":
model = FeatureTransfer(bb)
else:
raise ValueError("Unrecognised method")
optimizer = torch.optim.Adam(
[
{"params": model.model.parameters(), "lr": 0.001},
{"params": model.feature_extractor.parameters(), "lr": 0.001},
]
)
for epoch in range(params.stop_epoch):
model.train_loop(epoch, optimizer)
model.save_checkpoint(params.checkpoint_dir)