forked from gmum/few-shot-hypernets-public
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
40 lines (31 loc) · 1.08 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import numpy as np
import torch
def one_hot(y, num_class):
return torch.zeros((len(y), num_class)).scatter_(1, y.unsqueeze(1), 1)
def DBindex(cl_data_file):
class_list = cl_data_file.keys()
cl_num = len(class_list)
cl_means = []
stds = []
DBs = []
for cl in class_list:
cl_means.append(np.mean(cl_data_file[cl], axis=0))
stds.append(
np.sqrt(np.mean(np.sum(np.square(cl_data_file[cl] - cl_means[-1]), axis=1)))
)
mu_i = np.tile(np.expand_dims(np.array(cl_means), axis=0), (len(class_list), 1, 1))
mu_j = np.transpose(mu_i, (1, 0, 2))
mdists = np.sqrt(np.sum(np.square(mu_i - mu_j), axis=2))
for i in range(cl_num):
DBs.append(
np.max(
[(stds[i] + stds[j]) / mdists[i, j] for j in range(cl_num) if j != i]
)
)
return np.mean(DBs)
def sparsity(cl_data_file):
class_list = cl_data_file.keys()
cl_sparsity = []
for cl in class_list:
cl_sparsity.append(np.mean([np.sum(x != 0) for x in cl_data_file[cl]]))
return np.mean(cl_sparsity)