forked from shubhomoydas/ad_examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathglad_batch.py
159 lines (116 loc) · 6.24 KB
/
glad_batch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
from .afss import *
from .glad_test_support import *
"""
An implementation of:
GLAD: *GL*ocalized *A*nomaly *D*etection via Active Feature Space Suppression
python -m glad.glad_batch --log_file=temp/glad/glad_batch.log --debug --dataset=toy2 --n_epochs=200 --afss_bias_prob=0.50 --train_batch_size=25 --budget=60 --afss_nodes=0 --afss_max_labeled_reps=5 --loda_debug --plot
"""
supported_ensemble_types = ["loda"]
def afss_active_learn_ensemble(x, y, ensemble, opts):
data_2D = x.shape[1] == 2
plot = opts.plot and data_2D
# populate labels as some dummy value (-1) initially
y_labeled = np.ones(x.shape[0], dtype=int) * -1
scores = ensemble.get_scores(x)
xx = yy = None
afss = get_afss_model(opts, n_output=ensemble.m)
afss.init_network(x, prime_network=True)
baseline_scores = afss.get_weighted_scores(x, scores)
baseline_queried = np.argsort(-baseline_scores)
baseline_found = np.cumsum(y[baseline_queried[np.arange(opts.budget)]])
logger.debug("baseline found:\n%s" % (str(list(baseline_found))))
queried = [] # labeled instances
for i in range(opts.budget):
tm = Timer()
a_scores = afss.get_weighted_scores(x, scores)
ordered_indexes = np.argsort(-a_scores)
items = get_first_vals_not_marked(ordered_indexes, queried, start=0, n=1)
queried.extend(items)
hf = np.array(queried, dtype=int)
y_labeled[items] = y[items]
afss.update_afss(x, y_labeled, hf, scores, tau=opts.afss_tau)
if plot and ensemble.m < 5:
xx, yy = plot_afss_scores(x, y, ensemble, afss, selected=x[hf], cmap='jet', xx=xx, yy=yy,
name="_f%d_after" % (i+1), dataset=opts.dataset, outpath=opts.results_dir)
logger.debug(tm.message("finished budget %d:" % (i+1)))
if plot:
xx, yy = plot_weighted_scores(x, y, ensemble, afss, selected=None, xx=xx, yy=yy, contour_levels=20,
name="_feedback_after", n_anoms=opts.n_anoms,
dataset=opts.dataset, outpath=opts.results_dir)
if opts.explain:
# get the next unlabeled instance and try to explain its anomaly score
explainer = GLADEnsembleLimeExplainer(x, y, ensemble, afss, feature_names=["x", "y"])
a_scores = afss.get_weighted_scores(x, scores)
ordered_indexes = np.argsort(-a_scores)
items = get_first_vals_not_marked(ordered_indexes, queried, start=0, n=1)
# why did GLAD assign a high anomaly score to the instance in its current state?
explanation, best_member, member_relevance = explainer.explain(x[items[0]])
if explanation is not None:
logger.debug("\nExplain inst: %d %s (%s); best: %d %s\n%s" %
(items[0], "" if x.shape[1] != 2 else str(x[items[0]]),
"anomaly" if y[items[0]] == 1 else "nominal",
best_member, str(member_relevance), str(explanation.as_list())))
if plot:
max_rank = 1
plot_glad_relevance_regions(x, y, ensemble, afss, selected=x[items],
max_rank=max_rank, name="rel_regions_r%d" % max_rank,
dataset=opts.dataset, outpath=opts.results_dir)
afss.close_session()
# the number of anomalies discovered within the budget while incorporating feedback
# logger.debug("queried:\n%s" % str(queried))
# logger.debug("y_labeled:\n%s" % str(list(y_labeled[queried])))
found = np.cumsum(y[queried])
logger.debug("GLAD found:\n%s" % (str(list(found))))
# make queried indexes 1-indexed
queried = np.array(queried, dtype=int) + 1
baseline_queried = np.array(baseline_queried[0:opts.budget], dtype=int) + 1
results = SequentialResults(num_seen=found, num_seen_baseline=baseline_found,
queried_indexes=queried,
queried_indexes_baseline=baseline_queried)
return results
def glad_active_learn(opts):
set_results_dir(opts)
dir_create(opts.results_dir)
opts.plot = opts.plot and opts.reruns == 1 # just in case...
logger.debug("feedback budget: %d, batch_size: %d, afss_nodes: %d" %
(opts.budget, opts.train_batch_size, opts.afss_nodes))
if opts.ensemble_type not in supported_ensemble_types:
raise ValueError("Unsupported ensemble type '%s'. Supported ensemble types: %s." %
(opts.ensemble_type, str(supported_ensemble_types)))
x, y = read_anomaly_dataset(opts.dataset)
logger.debug("dataset: %s, shape: %s" % (opts.dataset, str(x.shape)))
all_results = SequentialResults()
orig_randseed = opts.randseed
ensembles = []
for i in range(opts.reruns):
tm = Timer()
opts.randseed = orig_randseed + i
opts.runidx = i+1
set_random_seeds(opts.randseed, opts.randseed+1, opts.randseed+2)
ensemble = prepare_loda_ensemble(x, mink=opts.loda_mink, maxk=opts.loda_maxk,
debug=opts.loda_debug and x.shape[1] == 2, m=4)
logger.debug("#LODA projections: %d" % ensemble.m)
ensembles.append(ensemble)
if not opts.ensemble_only:
results = afss_active_learn_ensemble(x, y, ensemble, opts)
all_results.merge(results)
logger.debug(tm.message("completed run %d/%d:" % (i+1, opts.reruns)))
if not opts.ensemble_only:
all_results.write_to_csv(opts)
else:
all_results = None
return x, y, all_results, ensembles
if __name__ == "__main__":
logger = logging.getLogger(__name__)
dir_create("./temp/glad")
args = get_glad_command_args(debug=False, debug_args=["--debug",
"--plot",
"--dataset=toy",
"--budget=1",
"--n_anoms=30",
"--log_file=temp/glad/glad_batch.log"])
# print "log file: %s" % args.log_file
configure_logger(args)
opts = GladOpts(args)
logger.debug("running: %s" % opts.str_opts())
glad_active_learn(opts)