-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
318 lines (273 loc) · 13.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import argparse
import time
import random
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from model import LstmVAE
from loss import (recon_loss, total_kld, flow_kld, compute_mmd,
mutual_info, mutual_info_flow,
compute_nll)
from stochastic.flow import NormalizingFlows
from data import Corpus, get_iterator, PAD_TOKEN, SOS_TOKEN
parser = argparse.ArgumentParser(description='RNF WAE')
parser.add_argument('--data', type=str, default='~/data/ptb',
help="location of the data folder")
parser.add_argument('--max_vocab', type=int, default=20000,
help="maximum vocabulary size for the input")
parser.add_argument('--max_length', type=int, default=200,
help="maximum sequence length for the input")
parser.add_argument('--embed_dim', type=int, default=200,
help="dim of the word embedding")
parser.add_argument('--hidden_dim', type=int, default=200,
help="number of hidden units for RNN")
parser.add_argument('--code_dim', type=int, default=32,
help="latent code dimension")
parser.add_argument('--dist', type=str, default='normal', help="choice of distribution")
parser.add_argument('--fix', action='store_true', help='use fixed temp in vmf')
parser.add_argument('--enc_type', type=str, default='lstm',
help="type of encoder")
parser.add_argument('--de_type', type=str, default='lstm',
help="type of decoder")
parser.add_argument('--epochs', type=int, default=48,
help="maximum training epochs")
parser.add_argument('--batch_size', type=int, default=32, metavar='N',
help="batch size")
parser.add_argument('--dropout', type=float, default=0.2,
help="dropout applied to layers (0 = no dropout)")
parser.add_argument('--lr', type=float, default=1e-3,
help="learning rate")
parser.add_argument('--beta', type=float, default=0.9)
parser.add_argument('--epoch_size', type=int, default=2000,
help="number of training steps in an epoch")
parser.add_argument('--kla', action='store_true',
help="use kl annealing")
parser.add_argument('--wd', type=float, default=0)
parser.add_argument('--t', type=float, default=0.8)
parser.add_argument('--loss_type', type=str, default='entropy')
parser.add_argument('--save_name', type=str, default="trained_model.pt")
parser.add_argument('--load', action='store_true',
help="load pre-trained model")
parser.add_argument('--flow', action='store_true', help="use NF")
parser.add_argument('--center', action='store_true', help="use RNF")
parser.add_argument('--n_flows', type=int, default=1, help="number of flows")
parser.add_argument('--mmd', action='store_true', help="use mmd instead of kl")
parser.add_argument('--mmd_w', type=float, default=2.5, help="mmd ceiling")
parser.add_argument('--nokld', action='store_true')
parser.add_argument('--sent_length', type=int, default=30, help="length of generated samples")
parser.add_argument('--device_id', type=int, default=0)
parser.add_argument('--nsamples', type=int, default=500)
parser.add_argument('--kernel', type=str, default='g')
parser.add_argument('--reg', type=str, default='g')
parser.add_argument('--band', type=float, default=0.5)
parser.add_argument('--iw', action='store_true')
parser.add_argument('--test_log_name', type=str, default='log.txt')
parser.add_argument('--save', action='store_true')
args = parser.parse_args()
torch.manual_seed(123)
random.seed(123)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
class PositiveClipper(object):
def __init__(self, frequency=1):
self.frequency = frequency
def __call__(self, module):
if hasattr(module, 'band'):
module.band.data.clamp_(0)
def idx_to_word(idx, idx2word, pad_idx):
sent_str = [str()]*len(idx)
for i, sent in enumerate(idx):
for word_idx in sent:
if word_idx == pad_idx:
break
sent_str[i] += idx2word[word_idx] + " "
sent_str[i] = sent_str[i].strip()
return sent_str
def save_checkpoint(model, optimizer, epoch, filename):
state = {"model_state_dict": model.state_dict(),
"optimizer": optimizer.state_dict(),
"epoch": epoch}
torch.save(state, filename)
def load_checkpoint(model, optimizer, device, filename):
checkpoint = torch.load(filename)
start_epoch = checkpoint["epoch"]
model.load_state_dict(checkpoint["model_state_dict"])
model = model.to(device)
optimizer.load_state_dict(checkpoint["optimizer"])
for state in optimizer.state.values():
for k, v in state.items():
if isinstance(v, torch.Tensor):
state[k] = v.to(device)
return start_epoch, model, optimizer
def weight_schedule(t, start=6000, end=40000):
return max(min((t - 6000) / 40000, 1), 0)
def run(args, data_iter, model, pad_id, optimizer, epoch, train=True):
if train is True:
model.train()
else:
model.eval()
data_iter.init_epoch()
batch_time = AverageMeter()
size = min(len(data_iter.data()), args.epoch_size * args.batch_size)
re_loss = 0
kl_divergence = 0
flow_kl_divergence = 0
mutual_information1, mutual_information2 = 0, 0
seq_words = 0
mmd_loss = 0
negative_ll = 0
iw_negative_ll = 0
sum_log_j = 0
start = time.time()
end = time.time()
for i, batch in enumerate(data_iter):
if i == args.epoch_size:
break
texts, lengths = batch.text
batch_size = texts.size(0)
inputs = texts[:, :-1].clone()
targets = texts[:, 1:].clone()
q_z, p_z, z, outputs, sum_log_jacobian, penalty, z0 = model(inputs, lengths-1, pad_id)
if args.loss_type == 'entropy':
reloss = recon_loss(outputs, targets, pad_id, id=args.loss_type)
else:
reloss = recon_loss(inputs, outputs, pad_id, id=args.loss_type)
kld = total_kld(q_z, p_z)
if args.flow:
f_kld = flow_kld(q_z, p_z, z, z0, sum_log_jacobian)
else:
f_kld = torch.zeros(1)
mi_z= mutual_info(q_z, p_z, z0)
nll = compute_nll(q_z, p_z, z, z0, sum_log_jacobian, reloss)
if args.iw:
iw_nll = model.iw_nll(q_z, p_z, inputs, targets, lengths-1, pad_id, args.nsamples)
else:
iw_nll = torch.zeros(1)
if args.flow:
mi_flow = mutual_info_flow(q_z, p_z, z, z0, sum_log_jacobian)
else:
mi_flow = torch.zeros(1).to(z.device)
mmd = torch.zeros(1).to(z.device)
kld_weight = weight_schedule(args.epoch_size * (epoch - 1) + i) if args.kla else 1.
if args.mmd:
# prior_samples = torch.randn(z.size(0), z.size(-1)).to(z.device)
mmd = compute_mmd(p_z, q_z, args.kernel)
if kld_weight > args.t:
kld_weight = args.t
if args.nokld:
kld_weight = 0
if train is True:
optimizer.zero_grad()
if args.flow:
# loss = reloss / batch_size + kld_weight * (kld - torch.sum(sum_log_jacobian) + torch.sum(penalty)) / batch_size + (args.mmd_w - kld_weight) * mmd
loss = reloss / batch_size + kld_weight * (q_z.log_prob(z0).sum() - p_z.log_prob(z).sum()) / batch_size - (torch.sum(sum_log_jacobian) - torch.sum(penalty)) / batch_size + (args.mmd_w - kld_weight) * mmd
else:
loss = (reloss + kld_weight * kld) / batch_size + (args.mmd_w - kld_weight) * mmd
loss.backward()
optimizer.step()
re_loss += reloss.item() / size
kl_divergence += kld.item() / size
flow_kl_divergence += f_kld.item() * batch_size / size
mutual_information1 += mi_z.item() * batch_size / size
mutual_information2 += mi_flow.item() * batch_size / size
seq_words += torch.sum(lengths-1).item()
mmd_loss += mmd.item() * batch_size / size
negative_ll += nll.item() * batch_size / size
iw_negative_ll += iw_nll.item() * batch_size / size
sum_log_j += torch.sum(sum_log_jacobian).item() / size
batch_time.update(time.time() - end)
if kl_divergence > 100:
kl_divergence = 100
flow_kl_divergence = 100
if args.iw:
nll_ppl = math.exp(iw_negative_ll * size / seq_words)
else:
nll_ppl = math.exp(negative_ll * size / seq_words)
return re_loss, kl_divergence, flow_kl_divergence, mutual_information1, mutual_information2, mmd_loss, nll_ppl, negative_ll, iw_negative_ll, sum_log_j, start, batch_time
def main(args):
print("Loading data")
dataset = args.data.rstrip('/').split('/')[-1]
corpus = Corpus(
args.data, max_vocab_size=args.max_vocab,
max_length=args.max_length
)
pad_id = corpus.word2idx[PAD_TOKEN]
sos_id = corpus.word2idx[SOS_TOKEN]
vocab_size = len(corpus.word2idx)
print(args)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
torch.cuda.set_device(args.device_id)
cent_name = dataset + "_centers.pt"
centers = None
if args.center:
centers = torch.load(cent_name).to(device)
# centers.requires_grad = False
centers = centers.detach()
model = LstmVAE(vocab_size, args.embed_dim, args.hidden_dim, args.code_dim, args.dropout,
centers=centers, enc_type=args.enc_type, de_type=args.de_type, dist=args.dist, fix=args.fix, device=device).to(device)
if args.flow:
flow = NormalizingFlows(args.code_dim, n_flows=args.n_flows, reg=args.reg, band=args.band).to(device)
model.add_flow(flow)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, betas=(args.beta, 0.999), weight_decay=args.wd)
train_iter = get_iterator(corpus.train, args.batch_size, True, device)
valid_iter = get_iterator(corpus.valid, args.batch_size, False, device)
test_iter = get_iterator(corpus.test, args.batch_size, False, device)
start_epoch = 1
if args.load is True:
start_epoch, model, optimizer= load_checkpoint(model, optimizer, device, args.save_name)
print("\nStart training")
try:
for epoch in range(start_epoch, args.epochs+1):
(re_loss, kl_divergence, flow_kld, mi1, mi2, mmd_loss, nll_ppl, nll, iw_nll, sum_log_j, start, batch_time) = run(args, train_iter, model, pad_id, optimizer, epoch,
train=True)
if args.save:
save_checkpoint(model, optimizer, epoch, args.save_name)
print('-' * 90)
meta = "| epoch {:2d} ".format(epoch)
print(meta + "| train loss {:5.2f} ({:5.2f}) ({:5.2f}) | train ppl {:5.2f} ({:5.2f} {:5.2f}) | mmd {:5.2f} | mi E {:5.2f} | mi R {:5.2f} | log J {:5.2f}"
"| Time {batch_time.val:5.2f} ({batch_time.avg:5.2f})\t".format(re_loss, kl_divergence, flow_kld,
nll_ppl, nll, iw_nll, mmd_loss, mi1, mi2, sum_log_j,
batch_time=batch_time))
(re_loss, kl_divergence, flow_kld, mi1, mi2, mmd_loss, nll_ppl, nll, iw_nll, sum_log_j, _, _) = run(args, valid_iter, model, pad_id,optimizer, epoch,
train=False)
print(len(meta)*' ' + "| valid loss {:5.2f} ({:5.2f}) ({:5.2f}) | valid ppl {:5.2f} ({:5.2f} {:5.2f})"
"| mmd {:5.2f} | mi E {:5.2f} | mi R {:5.2f} | log J {:5.2f} \t".format(re_loss, kl_divergence, flow_kld,
nll_ppl, nll, iw_nll, mmd_loss, mi1, mi2, sum_log_j, flush=True))
if dataset in ['yahoo'] and epoch in [15, 35] :
for param_group in optimizer.param_groups:
param_group['lr'] *= 0.5
except KeyboardInterrupt:
print('-'*50)
print('Quit training')
(re_loss, kl_divergence, flow_kld, mi1, mi2, mmd_loss, nll_ppl, nll, iw_nll, sum_log_j, _, _) = run(args, test_iter, model, pad_id, optimizer, epoch,
train=False)
print('=' * 90)
print("| Test results | test loss {:5.2f} ({:5.2f}) ({:5.2f}) | test ppl {:5.2f} ({:5.2f} {:5.2f}) | test mmd {:5.2f} | mi E {:5.2f} | mi R {:5.2f} | log J {:5.2f} ".format(
re_loss, kl_divergence, flow_kld, nll_ppl, nll, iw_nll, mmd_loss, mi1, mi2, sum_log_j))
print('=' * 90)
with open(args.test_log_name, 'a') as fd:
print('=' * 90, file=fd)
print("{} | dist {} | ende {} | em {} | | kla {} | mmd {} | flow {} | center {} | n flow {} | ker {} | reg {} | band {} | t {} | mmd w {} | iw {} | gpu {} | log {} |".format(dataset, args.dist, args.de_type, args.embed_dim, args.kla, args.mmd, args.flow, args.center, args.n_flows,
args.kernel, args.reg, args.band, args.t, args.mmd_w, args.iw, args.device_id, args.test_log_name), file=fd)
print('-'*90, file=fd)
print("| Test results | test loss {:5.2f} ({:5.2f}) ({:5.2f}) | test ppl {:5.2f} ({:5.2f} {:5.2f}) | test mmd {:5.2f} | mi E {:5.2f} | mi R {:5.2f} | log J {:5.2f}".format(
re_loss, kl_divergence, flow_kld, nll_ppl, nll, iw_nll, mmd_loss, mi1, mi2, sum_log_j), file=fd)
print('=' * 90, file=fd)
# generated = model.sample(10, args.sent_length, sos_id=sos_id)
# sent_str = idx_to_word(generated, idx2word=corpus.idx2word, pad_idx=pad_id)
# print(*sent_str, sep='\n')
if __name__ == "__main__":
main(args)