-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest.py
208 lines (179 loc) · 7.78 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
from utils.distributed import *
import torch.multiprocessing as mp
from utils.ckpt import *
from torch.nn.parallel import DistributedDataParallel as DDP
from utils.logging import *
import argparse
import time
from utils import config
from datasets.dataloader import loader,RefCOCODataSet
from tensorboardX import SummaryWriter
from utils.utils import *
import torch.optim as Optim
from importlib import import_module
class ModelLoader:
def __init__(self, __C):
self.model_use = __C.MODEL
model_moudle_path = 'models.' + self.model_use + '.net'
self.model_moudle = import_module(model_moudle_path)
def Net(self, __arg1, __arg2, __arg3):
return self.model_moudle.Net(__arg1, __arg2, __arg3)
def validate(__C,
net,
loader,
writer,
epoch,
rank,
ix_to_token,
save_ids=None,
prefix='Val',
ema=None):
if ema is not None:
ema.apply_shadow()
net.eval()
batches = len(loader)
batch_time = AverageMeter('Time', ':6.5f')
data_time = AverageMeter('Data', ':6.5f')
losses = AverageMeter('Loss', ':.4f')
box_ap = AverageMeter('[email protected]', ':6.2f')
meters = [batch_time, data_time, losses, box_ap]
meters_dict = {meter.name: meter for meter in meters}
progress = ProgressMeter(__C.VERSION, __C.EPOCHS, len(loader), meters, prefix=prefix+': ')
with th.no_grad():
end = time.time()
for ith_batch, data in enumerate(loader):
ref_iter, image_iter, box_iter,gt_box_iter,info_iter = data
ref_iter = ref_iter.cuda( non_blocking=True)
image_iter = image_iter.cuda( non_blocking=True)
box_iter = box_iter.cuda( non_blocking=True)
box= net(image_iter, ref_iter)
gt_box_iter=gt_box_iter.squeeze(1)
gt_box_iter[:, 2] = (gt_box_iter[:, 0] + gt_box_iter[:, 2])
gt_box_iter[:, 3] = (gt_box_iter[:, 1] + gt_box_iter[:, 3])
gt_box_iter=gt_box_iter.cpu().numpy()
info_iter=info_iter.cpu().numpy()
box=box.squeeze(1).cpu().numpy()
pred_box_vis=box.copy()
#predictions to gt
for i in range(len(gt_box_iter)):
box[i]=yolobox2label(box[i],info_iter[i])
box_iou=batch_box_iou(torch.from_numpy(gt_box_iter),torch.from_numpy(box)).cpu().numpy()
box_ap.update((box_iou>0.5).astype(np.float32).mean()*100., box_iou.shape[0])
reduce_meters(meters_dict, rank, __C)
if (ith_batch % __C.PRINT_FREQ == 0 or ith_batch==(len(loader)-1)) and main_process(__C,rank):
progress.display(epoch, ith_batch)
batch_time.update(time.time() - end)
end = time.time()
if main_process(__C,rank) and writer is not None:
writer.add_scalar("Acc/[email protected]", box_ap.avg_reduce, global_step=epoch)
if ema is not None:
ema.restore()
return box_ap.avg_reduce
def main_worker(gpu,__C):
global best_det_acc
best_det_acc=0.
if __C.MULTIPROCESSING_DISTRIBUTED:
if __C.DIST_URL == "env://" and __C.RANK == -1:
__C.RANK = int(os.environ["RANK"])
if __C.MULTIPROCESSING_DISTRIBUTED:
__C.RANK = __C.RANK* len(__C.GPU) + gpu
dist.init_process_group(backend=dist.Backend('NCCL'), init_method=__C.DIST_URL, world_size=__C.WORLD_SIZE, rank=__C.RANK)
train_set=RefCOCODataSet(__C,split='train')
train_loader=loader(__C,train_set,gpu,shuffle=(not __C.MULTIPROCESSING_DISTRIBUTED))
loaders=[]
prefixs=['val']
val_set=RefCOCODataSet(__C,split='val')
val_loader=loader(__C,val_set,gpu,shuffle=False)
loaders.append(val_loader)
if __C.DATASET=='refcoco' or __C.DATASET=='refcoco+':
testA=RefCOCODataSet(__C,split='testA')
testA_loader=loader(__C,testA,gpu,shuffle=False)
testB=RefCOCODataSet(__C,split='testB')
testB_loader=loader(__C,testB,gpu,shuffle=False)
prefixs.extend(['testA','testB'])
loaders.extend([testA_loader,testB_loader])
elif __C.DATASET=='referit':
test=RefCOCODataSet(__C,split='test')
test_loader=loader(__C,test,gpu,shuffle=False)
prefixs.append('test')
loaders.append(test_loader)
net= ModelLoader(__C).Net(
__C,
train_set.pretrained_emb,
train_set.token_size
)
#optimizer
std_optim = getattr(Optim, __C.OPT)
params = filter(lambda p: p.requires_grad, net.parameters()) # split_weights(net)
eval_str = 'params, lr=%f'%__C.LR
for key in __C.OPT_PARAMS:
eval_str += ' ,' + key + '=' + str(__C.OPT_PARAMS[key])
optimizer=eval('std_optim' + '(' + eval_str + ')')
if __C.MULTIPROCESSING_DISTRIBUTED:
torch.cuda.set_device(gpu)
net = DDP(net.cuda(), device_ids=[gpu],find_unused_parameters=True)
elif len(gpu)==1:
net.cuda()
else:
net = DP(net.cuda())
if main_process(__C, gpu):
print(__C)
total = sum([param.nelement() for param in net.parameters()])
print(' + Number of all params: %.2fM' % (total / 1e6)) # 每一百万为一个单位
total = sum([param.nelement() for param in net.parameters() if param.requires_grad])
print(' + Number of trainable params: %.2fM' % (total / 1e6)) # 每一百万为一个单位
if os.path.isfile(__C.RESUME_PATH):
checkpoint = torch.load(__C.RESUME_PATH,map_location=lambda storage, loc: storage.cuda() )
new_dict = {}
for k in checkpoint['state_dict']:
if 'module.' in k:
new_k = k.replace('module.', '')
new_dict[new_k] = checkpoint['state_dict'][k]
if len(new_dict.keys()) == 0:
new_dict = checkpoint['state_dict']
net.load_state_dict(new_dict)
optimizer.load_state_dict(checkpoint['optimizer'])
if main_process(__C,gpu):
print("==> loaded checkpoint from {}\n".format(__C.RESUME_PATH) +
"==> epoch: {} lr: {} ".format(checkpoint['epoch'],checkpoint['lr']))
if __C.AMP:
assert th.__version__ >= '1.6.0', \
"Automatic Mixed Precision training only supported in PyTorch-1.6.0 or higher"
scalar = th.cuda.amp.GradScaler()
else:
scalar = None
if main_process(__C,gpu):
writer = SummaryWriter(log_dir=os.path.join(__C.LOG_PATH,str(__C.VERSION)))
else:
writer = None
save_ids=np.random.randint(1, len(val_loader) * __C.BATCH_SIZE, 100) if __C.LOG_IMAGE else None
for loader_,prefix_ in zip(loaders,prefixs):
box_ap=validate(__C,net,loader_,writer,0,gpu,val_set.ix_to_token,save_ids=save_ids,prefix=prefix_)
print(box_ap)
def main():
parser = argparse.ArgumentParser(description="RefCLIP")
parser.add_argument('--config', type=str, default='config/refcoco.yaml')
parser.add_argument('--eval-weights', type=str, default='')
args=parser.parse_args()
assert args.config is not None
__C = config.load_cfg_from_cfg_file(args.config)
os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(str(x) for x in __C.GPU)
setup_unique_version(__C)
seed_everything(__C.SEED)
N_GPU=len(__C.GPU)
__C.RESUME_PATH=args.eval_weights
if not os.path.exists(os.path.join(__C.LOG_PATH,str(__C.VERSION))):
os.makedirs(os.path.join(__C.LOG_PATH,str(__C.VERSION),'ckpt'),exist_ok=True)
if N_GPU == 1:
__C.MULTIPROCESSING_DISTRIBUTED = False
else:
# turn on single or multi node multi gpus training
__C.MULTIPROCESSING_DISTRIBUTED = True
__C.WORLD_SIZE *= N_GPU
__C.DIST_URL = f"tcp://127.0.0.1:{find_free_port()}"
if __C.MULTIPROCESSING_DISTRIBUTED:
mp.spawn(main_worker, args=(__C,), nprocs=N_GPU, join=True)
else:
main_worker(__C.GPU,__C)
if __name__ == '__main__':
main()