-
Notifications
You must be signed in to change notification settings - Fork 76
/
Copy pathbitshuffle_core.c
2072 lines (1613 loc) · 65.5 KB
/
bitshuffle_core.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Bitshuffle - Filter for improving compression of typed binary data.
*
* Author: Kiyoshi Masui <[email protected]>
* Website: https://www.github.com/kiyo-masui/bitshuffle
* Created: 2014
*
* See LICENSE file for details about copyright and rights to use.
*
*/
#include "bitshuffle_core.h"
#include "bitshuffle_internals.h"
#include <stdio.h>
#include <string.h>
#if defined(__AVX512F__) && defined (__AVX512BW__) && defined(__AVX2__) && defined(__SSE2__)
#define USEAVX512
#endif
#if defined(__AVX2__) && defined (__SSE2__)
#define USEAVX2
#endif
#if defined(__SSE2__) || defined(NO_WARN_X86_INTRINSICS)
#define USESSE2
#endif
#if defined(__ARM_NEON__) || (__ARM_NEON)
#ifdef __aarch64__
#define USEARMNEON
#endif
#endif
// Conditional includes for SSE2 and AVX2.
#ifdef USEAVX2
#include <immintrin.h>
#elif defined USESSE2
#include <emmintrin.h>
#elif defined USEARMNEON
#include <arm_neon.h>
#endif
#if defined(_OPENMP) && defined(_MSC_VER)
typedef int64_t omp_size_t;
#else
typedef size_t omp_size_t;
#endif
#if defined(_MSC_VER)
typedef uint16_t alias_uint16_t;
#else
typedef uint16_t alias_uint16_t __attribute__((may_alias));
#endif
// Macros.
#define CHECK_MULT_EIGHT(n) do { if ((n) % 8) return -80; } while (0)
#define MAX(X,Y) ((X) > (Y) ? (X) : (Y))
/* ---- Functions indicating compile time instruction set. ---- */
int bshuf_using_NEON(void) {
#ifdef USEARMNEON
return 1;
#else
return 0;
#endif
}
int bshuf_using_SSE2(void) {
#ifdef USESSE2
return 1;
#else
return 0;
#endif
}
int bshuf_using_AVX2(void) {
#ifdef USEAVX2
return 1;
#else
return 0;
#endif
}
int bshuf_using_AVX512(void) {
#ifdef USEAVX512
return 1;
#else
return 0;
#endif
}
/* ---- Worker code not requiring special instruction sets. ----
*
* The following code does not use any x86 specific vectorized instructions
* and should compile on any machine
*
*/
/* Transpose 8x8 bit array packed into a single quadword *x*.
* *t* is workspace. */
#define TRANS_BIT_8X8(x, t) { \
t = (x ^ (x >> 7)) & 0x00AA00AA00AA00AALL; \
x = x ^ t ^ (t << 7); \
t = (x ^ (x >> 14)) & 0x0000CCCC0000CCCCLL; \
x = x ^ t ^ (t << 14); \
t = (x ^ (x >> 28)) & 0x00000000F0F0F0F0LL; \
x = x ^ t ^ (t << 28); \
}
/* Transpose 8x8 bit array along the diagonal from upper right
to lower left */
#define TRANS_BIT_8X8_BE(x, t) { \
t = (x ^ (x >> 9)) & 0x0055005500550055LL; \
x = x ^ t ^ (t << 9); \
t = (x ^ (x >> 18)) & 0x0000333300003333LL; \
x = x ^ t ^ (t << 18); \
t = (x ^ (x >> 36)) & 0x000000000F0F0F0FLL; \
x = x ^ t ^ (t << 36); \
}
/* Transpose of an array of arbitrarily typed elements. */
#define TRANS_ELEM_TYPE(in, out, lda, ldb, type_t) { \
size_t ii, jj, kk; \
const type_t* in_type = (const type_t*) in; \
type_t* out_type = (type_t*) out; \
for(ii = 0; ii + 7 < lda; ii += 8) { \
for(jj = 0; jj < ldb; jj++) { \
for(kk = 0; kk < 8; kk++) { \
out_type[jj*lda + ii + kk] = \
in_type[ii*ldb + kk * ldb + jj]; \
} \
} \
} \
for(ii = lda - lda % 8; ii < lda; ii ++) { \
for(jj = 0; jj < ldb; jj++) { \
out_type[jj*lda + ii] = in_type[ii*ldb + jj]; \
} \
} \
}
/* Memory copy with bshuf call signature. For testing and profiling. */
int64_t bshuf_copy(const void* in, void* out, const size_t size,
const size_t elem_size) {
const char* in_b = (const char*) in;
char* out_b = (char*) out;
memcpy(out_b, in_b, size * elem_size);
return size * elem_size;
}
/* Transpose bytes within elements, starting partway through input. */
int64_t bshuf_trans_byte_elem_remainder(const void* in, void* out, const size_t size,
const size_t elem_size, const size_t start) {
size_t ii, jj, kk;
const char* in_b = (const char*) in;
char* out_b = (char*) out;
CHECK_MULT_EIGHT(start);
if (size > start) {
// ii loop separated into 2 loops so the compiler can unroll
// the inner one.
for (ii = start; ii + 7 < size; ii += 8) {
for (jj = 0; jj < elem_size; jj++) {
for (kk = 0; kk < 8; kk++) {
out_b[jj * size + ii + kk]
= in_b[ii * elem_size + kk * elem_size + jj];
}
}
}
for (ii = size - size % 8; ii < size; ii ++) {
for (jj = 0; jj < elem_size; jj++) {
out_b[jj * size + ii] = in_b[ii * elem_size + jj];
}
}
}
return size * elem_size;
}
/* Transpose bytes within elements. */
int64_t bshuf_trans_byte_elem_scal(const void* in, void* out, const size_t size,
const size_t elem_size) {
return bshuf_trans_byte_elem_remainder(in, out, size, elem_size, 0);
}
/* Transpose bits within bytes. */
int64_t bshuf_trans_bit_byte_remainder(const void* in, void* out, const size_t size,
const size_t elem_size, const size_t start_byte) {
const uint64_t* in_b = (const uint64_t*) in;
uint8_t* out_b = (uint8_t*) out;
uint64_t x, t;
size_t ii, kk;
size_t nbyte = elem_size * size;
size_t nbyte_bitrow = nbyte / 8;
uint64_t e=1;
const int little_endian = *(uint8_t *) &e == 1;
const size_t bit_row_skip = little_endian ? nbyte_bitrow : -nbyte_bitrow;
const int64_t bit_row_offset = little_endian ? 0 : 7 * nbyte_bitrow;
CHECK_MULT_EIGHT(nbyte);
CHECK_MULT_EIGHT(start_byte);
for (ii = start_byte / 8; ii < nbyte_bitrow; ii ++) {
x = in_b[ii];
if (little_endian) {
TRANS_BIT_8X8(x, t);
} else {
TRANS_BIT_8X8_BE(x, t);
}
for (kk = 0; kk < 8; kk ++) {
out_b[bit_row_offset + kk * bit_row_skip + ii] = x;
x = x >> 8;
}
}
return size * elem_size;
}
/* Transpose bits within bytes. */
int64_t bshuf_trans_bit_byte_scal(const void* in, void* out, const size_t size,
const size_t elem_size) {
return bshuf_trans_bit_byte_remainder(in, out, size, elem_size, 0);
}
/* General transpose of an array, optimized for large element sizes. */
int64_t bshuf_trans_elem(const void* in, void* out, const size_t lda,
const size_t ldb, const size_t elem_size) {
size_t ii, jj;
const char* in_b = (const char*) in;
char* out_b = (char*) out;
for(ii = 0; ii < lda; ii++) {
for(jj = 0; jj < ldb; jj++) {
memcpy(&out_b[(jj*lda + ii) * elem_size],
&in_b[(ii*ldb + jj) * elem_size], elem_size);
}
}
return lda * ldb * elem_size;
}
/* Transpose rows of shuffled bits (size / 8 bytes) within groups of 8. */
int64_t bshuf_trans_bitrow_eight(const void* in, void* out, const size_t size,
const size_t elem_size) {
size_t nbyte_bitrow = size / 8;
CHECK_MULT_EIGHT(size);
return bshuf_trans_elem(in, out, 8, elem_size, nbyte_bitrow);
}
/* Transpose bits within elements. */
int64_t bshuf_trans_bit_elem_scal(const void* in, void* out, const size_t size,
const size_t elem_size) {
int64_t count;
void *tmp_buf;
CHECK_MULT_EIGHT(size);
tmp_buf = malloc(size * elem_size);
if (tmp_buf == NULL) return -1;
count = bshuf_trans_byte_elem_scal(in, out, size, elem_size);
CHECK_ERR_FREE(count, tmp_buf);
count = bshuf_trans_bit_byte_scal(out, tmp_buf, size, elem_size);
CHECK_ERR_FREE(count, tmp_buf);
count = bshuf_trans_bitrow_eight(tmp_buf, out, size, elem_size);
free(tmp_buf);
return count;
}
/* For data organized into a row for each bit (8 * elem_size rows), transpose
* the bytes. */
int64_t bshuf_trans_byte_bitrow_scal(const void* in, void* out, const size_t size,
const size_t elem_size) {
size_t ii, jj, kk, nbyte_row;
const char *in_b;
char *out_b;
in_b = (const char*) in;
out_b = (char*) out;
nbyte_row = size / 8;
CHECK_MULT_EIGHT(size);
for (jj = 0; jj < elem_size; jj++) {
for (ii = 0; ii < nbyte_row; ii++) {
for (kk = 0; kk < 8; kk++) {
out_b[ii * 8 * elem_size + jj * 8 + kk] =
in_b[(jj * 8 + kk) * nbyte_row + ii];
}
}
}
return size * elem_size;
}
/* Shuffle bits within the bytes of eight element blocks. */
int64_t bshuf_shuffle_bit_eightelem_scal(const void* in, void* out,
const size_t size, const size_t elem_size) {
const char *in_b;
char *out_b;
uint64_t x, t;
size_t ii, jj, kk;
size_t nbyte, out_index;
uint64_t e=1;
const int little_endian = *(uint8_t *) &e == 1;
const size_t elem_skip = little_endian ? elem_size : -elem_size;
const uint64_t elem_offset = little_endian ? 0 : 7 * elem_size;
CHECK_MULT_EIGHT(size);
in_b = (const char*) in;
out_b = (char*) out;
nbyte = elem_size * size;
for (jj = 0; jj < 8 * elem_size; jj += 8) {
for (ii = 0; ii + 8 * elem_size - 1 < nbyte; ii += 8 * elem_size) {
x = *((uint64_t*) &in_b[ii + jj]);
if (little_endian) {
TRANS_BIT_8X8(x, t);
} else {
TRANS_BIT_8X8_BE(x, t);
}
for (kk = 0; kk < 8; kk++) {
out_index = ii + jj / 8 + elem_offset + kk * elem_skip;
*((uint8_t*) &out_b[out_index]) = x;
x = x >> 8;
}
}
}
return size * elem_size;
}
/* Untranspose bits within elements. */
int64_t bshuf_untrans_bit_elem_scal(const void* in, void* out, const size_t size,
const size_t elem_size) {
int64_t count;
void *tmp_buf;
CHECK_MULT_EIGHT(size);
tmp_buf = malloc(size * elem_size);
if (tmp_buf == NULL) return -1;
count = bshuf_trans_byte_bitrow_scal(in, tmp_buf, size, elem_size);
CHECK_ERR_FREE(count, tmp_buf);
count = bshuf_shuffle_bit_eightelem_scal(tmp_buf, out, size, elem_size);
free(tmp_buf);
return count;
}
/* ---- Worker code that uses Arm NEON ----
*
* The following code makes use of the Arm NEON instruction set.
* NEON technology is the implementation of the ARM Advanced Single
* Instruction Multiple Data (SIMD) extension.
* The NEON unit is the component of the processor that executes SIMD instructions.
* It is also called the NEON Media Processing Engine (MPE).
*
*/
#ifdef USEARMNEON
/* Transpose bytes within elements for 16 bit elements. */
int64_t bshuf_trans_byte_elem_NEON_16(const void* in, void* out, const size_t size) {
size_t ii;
const char *in_b = (const char*) in;
char *out_b = (char*) out;
int8x16_t a0, b0, a1, b1;
for (ii=0; ii + 15 < size; ii += 16) {
a0 = vld1q_s8(in_b + 2*ii + 0*16);
b0 = vld1q_s8(in_b + 2*ii + 1*16);
a1 = vzip1q_s8(a0, b0);
b1 = vzip2q_s8(a0, b0);
a0 = vzip1q_s8(a1, b1);
b0 = vzip2q_s8(a1, b1);
a1 = vzip1q_s8(a0, b0);
b1 = vzip2q_s8(a0, b0);
a0 = vzip1q_s8(a1, b1);
b0 = vzip2q_s8(a1, b1);
vst1q_s8(out_b + 0*size + ii, a0);
vst1q_s8(out_b + 1*size + ii, b0);
}
return bshuf_trans_byte_elem_remainder(in, out, size, 2,
size - size % 16);
}
/* Transpose bytes within elements for 32 bit elements. */
int64_t bshuf_trans_byte_elem_NEON_32(const void* in, void* out, const size_t size) {
size_t ii;
const char *in_b;
char *out_b;
in_b = (const char*) in;
out_b = (char*) out;
int8x16_t a0, b0, c0, d0, a1, b1, c1, d1;
int64x2_t a2, b2, c2, d2;
for (ii=0; ii + 15 < size; ii += 16) {
a0 = vld1q_s8(in_b + 4*ii + 0*16);
b0 = vld1q_s8(in_b + 4*ii + 1*16);
c0 = vld1q_s8(in_b + 4*ii + 2*16);
d0 = vld1q_s8(in_b + 4*ii + 3*16);
a1 = vzip1q_s8(a0, b0);
b1 = vzip2q_s8(a0, b0);
c1 = vzip1q_s8(c0, d0);
d1 = vzip2q_s8(c0, d0);
a0 = vzip1q_s8(a1, b1);
b0 = vzip2q_s8(a1, b1);
c0 = vzip1q_s8(c1, d1);
d0 = vzip2q_s8(c1, d1);
a1 = vzip1q_s8(a0, b0);
b1 = vzip2q_s8(a0, b0);
c1 = vzip1q_s8(c0, d0);
d1 = vzip2q_s8(c0, d0);
a2 = vzip1q_s64(vreinterpretq_s64_s8(a1), vreinterpretq_s64_s8(c1));
b2 = vzip2q_s64(vreinterpretq_s64_s8(a1), vreinterpretq_s64_s8(c1));
c2 = vzip1q_s64(vreinterpretq_s64_s8(b1), vreinterpretq_s64_s8(d1));
d2 = vzip2q_s64(vreinterpretq_s64_s8(b1), vreinterpretq_s64_s8(d1));
vst1q_s64((int64_t *) (out_b + 0*size + ii), a2);
vst1q_s64((int64_t *) (out_b + 1*size + ii), b2);
vst1q_s64((int64_t *) (out_b + 2*size + ii), c2);
vst1q_s64((int64_t *) (out_b + 3*size + ii), d2);
}
return bshuf_trans_byte_elem_remainder(in, out, size, 4,
size - size % 16);
}
/* Transpose bytes within elements for 64 bit elements. */
int64_t bshuf_trans_byte_elem_NEON_64(const void* in, void* out, const size_t size) {
size_t ii;
const char* in_b = (const char*) in;
char* out_b = (char*) out;
int8x16_t a0, b0, c0, d0, e0, f0, g0, h0;
int8x16_t a1, b1, c1, d1, e1, f1, g1, h1;
for (ii=0; ii + 15 < size; ii += 16) {
a0 = vld1q_s8(in_b + 8*ii + 0*16);
b0 = vld1q_s8(in_b + 8*ii + 1*16);
c0 = vld1q_s8(in_b + 8*ii + 2*16);
d0 = vld1q_s8(in_b + 8*ii + 3*16);
e0 = vld1q_s8(in_b + 8*ii + 4*16);
f0 = vld1q_s8(in_b + 8*ii + 5*16);
g0 = vld1q_s8(in_b + 8*ii + 6*16);
h0 = vld1q_s8(in_b + 8*ii + 7*16);
a1 = vzip1q_s8 (a0, b0);
b1 = vzip2q_s8 (a0, b0);
c1 = vzip1q_s8 (c0, d0);
d1 = vzip2q_s8 (c0, d0);
e1 = vzip1q_s8 (e0, f0);
f1 = vzip2q_s8 (e0, f0);
g1 = vzip1q_s8 (g0, h0);
h1 = vzip2q_s8 (g0, h0);
a0 = vzip1q_s8 (a1, b1);
b0 = vzip2q_s8 (a1, b1);
c0 = vzip1q_s8 (c1, d1);
d0 = vzip2q_s8 (c1, d1);
e0 = vzip1q_s8 (e1, f1);
f0 = vzip2q_s8 (e1, f1);
g0 = vzip1q_s8 (g1, h1);
h0 = vzip2q_s8 (g1, h1);
a1 = (int8x16_t) vzip1q_s32 (vreinterpretq_s32_s8 (a0), vreinterpretq_s32_s8 (c0));
b1 = (int8x16_t) vzip2q_s32 (vreinterpretq_s32_s8 (a0), vreinterpretq_s32_s8 (c0));
c1 = (int8x16_t) vzip1q_s32 (vreinterpretq_s32_s8 (b0), vreinterpretq_s32_s8 (d0));
d1 = (int8x16_t) vzip2q_s32 (vreinterpretq_s32_s8 (b0), vreinterpretq_s32_s8 (d0));
e1 = (int8x16_t) vzip1q_s32 (vreinterpretq_s32_s8 (e0), vreinterpretq_s32_s8 (g0));
f1 = (int8x16_t) vzip2q_s32 (vreinterpretq_s32_s8 (e0), vreinterpretq_s32_s8 (g0));
g1 = (int8x16_t) vzip1q_s32 (vreinterpretq_s32_s8 (f0), vreinterpretq_s32_s8 (h0));
h1 = (int8x16_t) vzip2q_s32 (vreinterpretq_s32_s8 (f0), vreinterpretq_s32_s8 (h0));
a0 = (int8x16_t) vzip1q_s64 (vreinterpretq_s64_s8 (a1), vreinterpretq_s64_s8 (e1));
b0 = (int8x16_t) vzip2q_s64 (vreinterpretq_s64_s8 (a1), vreinterpretq_s64_s8 (e1));
c0 = (int8x16_t) vzip1q_s64 (vreinterpretq_s64_s8 (b1), vreinterpretq_s64_s8 (f1));
d0 = (int8x16_t) vzip2q_s64 (vreinterpretq_s64_s8 (b1), vreinterpretq_s64_s8 (f1));
e0 = (int8x16_t) vzip1q_s64 (vreinterpretq_s64_s8 (c1), vreinterpretq_s64_s8 (g1));
f0 = (int8x16_t) vzip2q_s64 (vreinterpretq_s64_s8 (c1), vreinterpretq_s64_s8 (g1));
g0 = (int8x16_t) vzip1q_s64 (vreinterpretq_s64_s8 (d1), vreinterpretq_s64_s8 (h1));
h0 = (int8x16_t) vzip2q_s64 (vreinterpretq_s64_s8 (d1), vreinterpretq_s64_s8 (h1));
vst1q_s8(out_b + 0*size + ii, a0);
vst1q_s8(out_b + 1*size + ii, b0);
vst1q_s8(out_b + 2*size + ii, c0);
vst1q_s8(out_b + 3*size + ii, d0);
vst1q_s8(out_b + 4*size + ii, e0);
vst1q_s8(out_b + 5*size + ii, f0);
vst1q_s8(out_b + 6*size + ii, g0);
vst1q_s8(out_b + 7*size + ii, h0);
}
return bshuf_trans_byte_elem_remainder(in, out, size, 8,
size - size % 16);
}
/* Transpose bytes within elements using best NEON algorithm available. */
int64_t bshuf_trans_byte_elem_NEON(const void* in, void* out, const size_t size,
const size_t elem_size) {
int64_t count;
// Trivial cases: power of 2 bytes.
switch (elem_size) {
case 1:
count = bshuf_copy(in, out, size, elem_size);
return count;
case 2:
count = bshuf_trans_byte_elem_NEON_16(in, out, size);
return count;
case 4:
count = bshuf_trans_byte_elem_NEON_32(in, out, size);
return count;
case 8:
count = bshuf_trans_byte_elem_NEON_64(in, out, size);
return count;
}
// Worst case: odd number of bytes. Turns out that this is faster for
// (odd * 2) byte elements as well (hence % 4).
if (elem_size % 4) {
count = bshuf_trans_byte_elem_scal(in, out, size, elem_size);
return count;
}
// Multiple of power of 2: transpose hierarchically.
{
size_t nchunk_elem;
void* tmp_buf = malloc(size * elem_size);
if (tmp_buf == NULL) return -1;
if ((elem_size % 8) == 0) {
nchunk_elem = elem_size / 8;
TRANS_ELEM_TYPE(in, out, size, nchunk_elem, int64_t);
count = bshuf_trans_byte_elem_NEON_64(out, tmp_buf,
size * nchunk_elem);
bshuf_trans_elem(tmp_buf, out, 8, nchunk_elem, size);
} else if ((elem_size % 4) == 0) {
nchunk_elem = elem_size / 4;
TRANS_ELEM_TYPE(in, out, size, nchunk_elem, int32_t);
count = bshuf_trans_byte_elem_NEON_32(out, tmp_buf,
size * nchunk_elem);
bshuf_trans_elem(tmp_buf, out, 4, nchunk_elem, size);
} else {
// Not used since scalar algorithm is faster.
nchunk_elem = elem_size / 2;
TRANS_ELEM_TYPE(in, out, size, nchunk_elem, int16_t);
count = bshuf_trans_byte_elem_NEON_16(out, tmp_buf,
size * nchunk_elem);
bshuf_trans_elem(tmp_buf, out, 2, nchunk_elem, size);
}
free(tmp_buf);
return count;
}
}
uint64_t neonmovemask_bulk(uint8x16_t p0, uint8x16_t p1, uint8x16_t p2, uint8x16_t p3) {
const uint8x16_t bitmask = { 0x01, 0x02, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80,
0x01, 0x02, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80};
uint8x16_t t0 = vandq_u8(p0, bitmask);
uint8x16_t t1 = vandq_u8(p1, bitmask);
uint8x16_t t2 = vandq_u8(p2, bitmask);
uint8x16_t t3 = vandq_u8(p3, bitmask);
uint8x16_t sum0 = vpaddq_u8(t0, t1);
uint8x16_t sum1 = vpaddq_u8(t2, t3);
sum0 = vpaddq_u8(sum0, sum1);
sum0 = vpaddq_u8(sum0, sum0);
return vgetq_lane_u64(vreinterpretq_u64_u8(sum0), 0);
}
/* Transpose bits within bytes. */
int64_t bshuf_trans_bit_byte_NEON(const void* in, void* out, const size_t size,
const size_t elem_size) {
size_t ii;
const char* in_b = (const char*) in;
char* out_b = (char*) out;
int64_t count;
size_t nbyte = elem_size * size;
CHECK_MULT_EIGHT(nbyte);
const uint8x16_t a0 = vdupq_n_u8(0x80);
const uint8x16_t a1 = vdupq_n_u8(0x40);
const uint8x16_t a2 = vdupq_n_u8(0x20);
const uint8x16_t a3 = vdupq_n_u8(0x10);
const uint8x16_t a4 = vdupq_n_u8(0x8);
const uint8x16_t a5 = vdupq_n_u8(0x4);
const uint8x16_t a6 = vdupq_n_u8(0x2);
const uint8x16_t a7 = vdupq_n_u8(0x1);
for (ii = 0; ii + 15 < nbyte; ii += 16) {
uint8x16_t x = vld1q_u8((uint8_t *) (in_b + ii));
uint8x16_t x0 = vceqq_u8(a0, vandq_u8(x, a0));
uint8x16_t x1 = vceqq_u8(a1, vandq_u8(x, a1));
uint8x16_t x2 = vceqq_u8(a2, vandq_u8(x, a2));
uint8x16_t x3 = vceqq_u8(a3, vandq_u8(x, a3));
uint8x16_t x4 = vceqq_u8(a4, vandq_u8(x, a4));
uint8x16_t x5 = vceqq_u8(a5, vandq_u8(x, a5));
uint8x16_t x6 = vceqq_u8(a6, vandq_u8(x, a6));
uint8x16_t x7 = vceqq_u8(a7, vandq_u8(x, a7));
uint64_t out[2];
out[0] = neonmovemask_bulk(x0, x1, x2, x3);
out[1] = neonmovemask_bulk(x4, x5, x6, x7);
int kk;
for (kk = 0; kk < 8; kk++) {
alias_uint16_t *out_ui16 = (uint16_t*) &out_b[((7 - kk) * nbyte + ii) / 8];
*out_ui16 = ((alias_uint16_t*)out)[kk];
}
}
count = bshuf_trans_bit_byte_remainder(in, out, size, elem_size,
nbyte - nbyte % 16);
return count;
}
/* Transpose bits within elements. */
int64_t bshuf_trans_bit_elem_NEON(const void* in, void* out, const size_t size,
const size_t elem_size) {
int64_t count;
CHECK_MULT_EIGHT(size);
void* tmp_buf = malloc(size * elem_size);
if (tmp_buf == NULL) return -1;
count = bshuf_trans_byte_elem_NEON(in, out, size, elem_size);
CHECK_ERR_FREE(count, tmp_buf);
count = bshuf_trans_bit_byte_NEON(out, tmp_buf, size, elem_size);
CHECK_ERR_FREE(count, tmp_buf);
count = bshuf_trans_bitrow_eight(tmp_buf, out, size, elem_size);
free(tmp_buf);
return count;
}
/* For data organized into a row for each bit (8 * elem_size rows), transpose
* the bytes. */
int64_t bshuf_trans_byte_bitrow_NEON(const void* in, void* out, const size_t size,
const size_t elem_size) {
size_t ii, jj;
const char* in_b = (const char*) in;
char* out_b = (char*) out;
CHECK_MULT_EIGHT(size);
size_t nrows = 8 * elem_size;
size_t nbyte_row = size / 8;
int8x16_t a0, b0, c0, d0, e0, f0, g0, h0;
int8x16_t a1, b1, c1, d1, e1, f1, g1, h1;
int64x1_t *as, *bs, *cs, *ds, *es, *fs, *gs, *hs;
for (ii = 0; ii + 7 < nrows; ii += 8) {
for (jj = 0; jj + 15 < nbyte_row; jj += 16) {
a0 = vld1q_s8(in_b + (ii + 0)*nbyte_row + jj);
b0 = vld1q_s8(in_b + (ii + 1)*nbyte_row + jj);
c0 = vld1q_s8(in_b + (ii + 2)*nbyte_row + jj);
d0 = vld1q_s8(in_b + (ii + 3)*nbyte_row + jj);
e0 = vld1q_s8(in_b + (ii + 4)*nbyte_row + jj);
f0 = vld1q_s8(in_b + (ii + 5)*nbyte_row + jj);
g0 = vld1q_s8(in_b + (ii + 6)*nbyte_row + jj);
h0 = vld1q_s8(in_b + (ii + 7)*nbyte_row + jj);
a1 = vzip1q_s8(a0, b0);
b1 = vzip1q_s8(c0, d0);
c1 = vzip1q_s8(e0, f0);
d1 = vzip1q_s8(g0, h0);
e1 = vzip2q_s8(a0, b0);
f1 = vzip2q_s8(c0, d0);
g1 = vzip2q_s8(e0, f0);
h1 = vzip2q_s8(g0, h0);
a0 = (int8x16_t) vzip1q_s16 (vreinterpretq_s16_s8 (a1), vreinterpretq_s16_s8 (b1));
b0= (int8x16_t) vzip1q_s16 (vreinterpretq_s16_s8 (c1), vreinterpretq_s16_s8 (d1));
c0 = (int8x16_t) vzip2q_s16 (vreinterpretq_s16_s8 (a1), vreinterpretq_s16_s8 (b1));
d0 = (int8x16_t) vzip2q_s16 (vreinterpretq_s16_s8 (c1), vreinterpretq_s16_s8 (d1));
e0 = (int8x16_t) vzip1q_s16 (vreinterpretq_s16_s8 (e1), vreinterpretq_s16_s8 (f1));
f0 = (int8x16_t) vzip1q_s16 (vreinterpretq_s16_s8 (g1), vreinterpretq_s16_s8 (h1));
g0 = (int8x16_t) vzip2q_s16 (vreinterpretq_s16_s8 (e1), vreinterpretq_s16_s8 (f1));
h0 = (int8x16_t) vzip2q_s16 (vreinterpretq_s16_s8 (g1), vreinterpretq_s16_s8 (h1));
a1 = (int8x16_t) vzip1q_s32 (vreinterpretq_s32_s8 (a0), vreinterpretq_s32_s8 (b0));
b1 = (int8x16_t) vzip2q_s32 (vreinterpretq_s32_s8 (a0), vreinterpretq_s32_s8 (b0));
c1 = (int8x16_t) vzip1q_s32 (vreinterpretq_s32_s8 (c0), vreinterpretq_s32_s8 (d0));
d1 = (int8x16_t) vzip2q_s32 (vreinterpretq_s32_s8 (c0), vreinterpretq_s32_s8 (d0));
e1 = (int8x16_t) vzip1q_s32 (vreinterpretq_s32_s8 (e0), vreinterpretq_s32_s8 (f0));
f1 = (int8x16_t) vzip2q_s32 (vreinterpretq_s32_s8 (e0), vreinterpretq_s32_s8 (f0));
g1 = (int8x16_t) vzip1q_s32 (vreinterpretq_s32_s8 (g0), vreinterpretq_s32_s8 (h0));
h1 = (int8x16_t) vzip2q_s32 (vreinterpretq_s32_s8 (g0), vreinterpretq_s32_s8 (h0));
as = (int64x1_t *) &a1;
bs = (int64x1_t *) &b1;
cs = (int64x1_t *) &c1;
ds = (int64x1_t *) &d1;
es = (int64x1_t *) &e1;
fs = (int64x1_t *) &f1;
gs = (int64x1_t *) &g1;
hs = (int64x1_t *) &h1;
vst1_s64((int64_t *)(out_b + (jj + 0) * nrows + ii), *as);
vst1_s64((int64_t *)(out_b + (jj + 1) * nrows + ii), *(as + 1));
vst1_s64((int64_t *)(out_b + (jj + 2) * nrows + ii), *bs);
vst1_s64((int64_t *)(out_b + (jj + 3) * nrows + ii), *(bs + 1));
vst1_s64((int64_t *)(out_b + (jj + 4) * nrows + ii), *cs);
vst1_s64((int64_t *)(out_b + (jj + 5) * nrows + ii), *(cs + 1));
vst1_s64((int64_t *)(out_b + (jj + 6) * nrows + ii), *ds);
vst1_s64((int64_t *)(out_b + (jj + 7) * nrows + ii), *(ds + 1));
vst1_s64((int64_t *)(out_b + (jj + 8) * nrows + ii), *es);
vst1_s64((int64_t *)(out_b + (jj + 9) * nrows + ii), *(es + 1));
vst1_s64((int64_t *)(out_b + (jj + 10) * nrows + ii), *fs);
vst1_s64((int64_t *)(out_b + (jj + 11) * nrows + ii), *(fs + 1));
vst1_s64((int64_t *)(out_b + (jj + 12) * nrows + ii), *gs);
vst1_s64((int64_t *)(out_b + (jj + 13) * nrows + ii), *(gs + 1));
vst1_s64((int64_t *)(out_b + (jj + 14) * nrows + ii), *hs);
vst1_s64((int64_t *)(out_b + (jj + 15) * nrows + ii), *(hs + 1));
}
for (jj = nbyte_row - nbyte_row % 16; jj < nbyte_row; jj ++) {
out_b[jj * nrows + ii + 0] = in_b[(ii + 0)*nbyte_row + jj];
out_b[jj * nrows + ii + 1] = in_b[(ii + 1)*nbyte_row + jj];
out_b[jj * nrows + ii + 2] = in_b[(ii + 2)*nbyte_row + jj];
out_b[jj * nrows + ii + 3] = in_b[(ii + 3)*nbyte_row + jj];
out_b[jj * nrows + ii + 4] = in_b[(ii + 4)*nbyte_row + jj];
out_b[jj * nrows + ii + 5] = in_b[(ii + 5)*nbyte_row + jj];
out_b[jj * nrows + ii + 6] = in_b[(ii + 6)*nbyte_row + jj];
out_b[jj * nrows + ii + 7] = in_b[(ii + 7)*nbyte_row + jj];
}
}
return size * elem_size;
}
/* Shuffle bits within the bytes of eight element blocks. */
int64_t bshuf_shuffle_bit_eightelem_NEON(const void* in, void* out, const size_t size,
const size_t elem_size) {
CHECK_MULT_EIGHT(size);
// With a bit of care, this could be written such that such that it is
// in_buf = out_buf safe.
const char* in_b = (const char*) in;
alias_uint16_t* out_ui16 = (alias_uint16_t*) out;
size_t ii, jj, kk;
size_t nbyte = elem_size * size;
if (elem_size % 2) {
bshuf_shuffle_bit_eightelem_scal(in, out, size, elem_size);
} else {
const uint8x16_t a0 = vdupq_n_u8(0x80);
const uint8x16_t a1 = vdupq_n_u8(0x40);
const uint8x16_t a2 = vdupq_n_u8(0x20);
const uint8x16_t a3 = vdupq_n_u8(0x10);
const uint8x16_t a4 = vdupq_n_u8(0x8);
const uint8x16_t a5 = vdupq_n_u8(0x4);
const uint8x16_t a6 = vdupq_n_u8(0x2);
const uint8x16_t a7 = vdupq_n_u8(0x1);
for (ii = 0; ii + 8 * elem_size - 1 < nbyte;
ii += 8 * elem_size) {
for (jj = 0; jj + 15 < 8 * elem_size; jj += 16) {
uint8x16_t x = vld1q_u8((uint8_t *) &in_b[ii + jj]);
uint8x16_t x0 = vceqq_u8(a0, vandq_u8(x, a0));
uint8x16_t x1 = vceqq_u8(a1, vandq_u8(x, a1));
uint8x16_t x2 = vceqq_u8(a2, vandq_u8(x, a2));
uint8x16_t x3 = vceqq_u8(a3, vandq_u8(x, a3));
uint8x16_t x4 = vceqq_u8(a4, vandq_u8(x, a4));
uint8x16_t x5 = vceqq_u8(a5, vandq_u8(x, a5));
uint8x16_t x6 = vceqq_u8(a6, vandq_u8(x, a6));
uint8x16_t x7 = vceqq_u8(a7, vandq_u8(x, a7));
uint64_t out[2];
out[0] = neonmovemask_bulk(x0, x1, x2, x3);
out[1] = neonmovemask_bulk(x4, x5, x6, x7);
for (kk = 0; kk < 8; kk++) {
size_t ind = (ii + jj / 8 + (7 - kk) * elem_size);
out_ui16[ind / 2] = ((alias_uint16_t *)out)[kk];
}
}
}
}
return size * elem_size;
}
/* Untranspose bits within elements. */
int64_t bshuf_untrans_bit_elem_NEON(const void* in, void* out, const size_t size,
const size_t elem_size) {
int64_t count;
CHECK_MULT_EIGHT(size);
void* tmp_buf = malloc(size * elem_size);
if (tmp_buf == NULL) return -1;
count = bshuf_trans_byte_bitrow_NEON(in, tmp_buf, size, elem_size);
CHECK_ERR_FREE(count, tmp_buf);
count = bshuf_shuffle_bit_eightelem_NEON(tmp_buf, out, size, elem_size);
free(tmp_buf);
return count;
}
#else // #ifdef USEARMNEON
int64_t bshuf_untrans_bit_elem_NEON(const void* in, void* out, const size_t size,
const size_t elem_size) {
return -13;
}
int64_t bshuf_trans_bit_elem_NEON(const void* in, void* out, const size_t size,
const size_t elem_size) {
return -13;
}
int64_t bshuf_trans_byte_bitrow_NEON(const void* in, void* out, const size_t size,
const size_t elem_size) {
return -13;
}
int64_t bshuf_trans_bit_byte_NEON(const void* in, void* out, const size_t size,
const size_t elem_size) {
return -13;
}
int64_t bshuf_trans_byte_elem_NEON(const void* in, void* out, const size_t size,
const size_t elem_size) {
return -13;
}
int64_t bshuf_trans_byte_elem_NEON_64(const void* in, void* out, const size_t size) {
return -13;
}
int64_t bshuf_trans_byte_elem_NEON_32(const void* in, void* out, const size_t size) {
return -13;
}
int64_t bshuf_trans_byte_elem_NEON_16(const void* in, void* out, const size_t size) {
return -13;
}
int64_t bshuf_shuffle_bit_eightelem_NEON(const void* in, void* out, const size_t size,
const size_t elem_size) {
return -13;
}
#endif
/* ---- Worker code that uses SSE2 ----
*
* The following code makes use of the SSE2 instruction set and specialized
* 16 byte registers. The SSE2 instructions are present on modern x86
* processors. The first Intel processor microarchitecture supporting SSE2 was
* Pentium 4 (2000).
*
*/
#ifdef USESSE2
/* Transpose bytes within elements for 16 bit elements. */
int64_t bshuf_trans_byte_elem_SSE_16(const void* in, void* out, const size_t size) {
size_t ii;
const char *in_b = (const char*) in;
char *out_b = (char*) out;
__m128i a0, b0, a1, b1;
for (ii=0; ii + 15 < size; ii += 16) {
a0 = _mm_loadu_si128((__m128i *) &in_b[2*ii + 0*16]);
b0 = _mm_loadu_si128((__m128i *) &in_b[2*ii + 1*16]);
a1 = _mm_unpacklo_epi8(a0, b0);
b1 = _mm_unpackhi_epi8(a0, b0);
a0 = _mm_unpacklo_epi8(a1, b1);
b0 = _mm_unpackhi_epi8(a1, b1);
a1 = _mm_unpacklo_epi8(a0, b0);
b1 = _mm_unpackhi_epi8(a0, b0);
a0 = _mm_unpacklo_epi8(a1, b1);
b0 = _mm_unpackhi_epi8(a1, b1);
_mm_storeu_si128((__m128i *) &out_b[0*size + ii], a0);
_mm_storeu_si128((__m128i *) &out_b[1*size + ii], b0);
}
return bshuf_trans_byte_elem_remainder(in, out, size, 2,
size - size % 16);
}
/* Transpose bytes within elements for 32 bit elements. */
int64_t bshuf_trans_byte_elem_SSE_32(const void* in, void* out, const size_t size) {
size_t ii;
const char *in_b;
char *out_b;
in_b = (const char*) in;
out_b = (char*) out;
__m128i a0, b0, c0, d0, a1, b1, c1, d1;
for (ii=0; ii + 15 < size; ii += 16) {
a0 = _mm_loadu_si128((__m128i *) &in_b[4*ii + 0*16]);
b0 = _mm_loadu_si128((__m128i *) &in_b[4*ii + 1*16]);
c0 = _mm_loadu_si128((__m128i *) &in_b[4*ii + 2*16]);
d0 = _mm_loadu_si128((__m128i *) &in_b[4*ii + 3*16]);
a1 = _mm_unpacklo_epi8(a0, b0);
b1 = _mm_unpackhi_epi8(a0, b0);
c1 = _mm_unpacklo_epi8(c0, d0);
d1 = _mm_unpackhi_epi8(c0, d0);
a0 = _mm_unpacklo_epi8(a1, b1);
b0 = _mm_unpackhi_epi8(a1, b1);
c0 = _mm_unpacklo_epi8(c1, d1);
d0 = _mm_unpackhi_epi8(c1, d1);
a1 = _mm_unpacklo_epi8(a0, b0);
b1 = _mm_unpackhi_epi8(a0, b0);
c1 = _mm_unpacklo_epi8(c0, d0);
d1 = _mm_unpackhi_epi8(c0, d0);