-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdemo_videoqa.py
170 lines (151 loc) · 5.46 KB
/
demo_videoqa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import os
import torch
import numpy as np
import random
import json
import argparse
from model import build_model, get_tokenizer
from args import get_args_parser
from util.misc import get_mask
import ffmpeg
from extract.preprocessing import Preprocessing
import clip
from args import MODEL_DIR
@torch.no_grad()
def main(args):
assert args.question_example
assert args.video_example
device = torch.device(args.device)
# Set seed
seed = args.seed
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
# Build model
print("building model")
tokenizer = get_tokenizer(args)
vocab = json.load(open(args.msrvtt_vocab_path, "r"))
id2a = {y: x for x, y in vocab.items()}
args.n_ans = len(vocab)
model = build_model(args)
model.to(device)
model.eval()
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print("number of params:", n_parameters)
# Load pretrained checkpoint
assert args.load
print("loading from", args.load)
checkpoint = torch.load(args.load, map_location="cpu")
model.load_state_dict(checkpoint["model"], strict=False)
# Init answer embedding module
aid2tokid = torch.zeros(len(vocab), args.max_atokens).long()
for a, aid in vocab.items():
tok = torch.tensor(
tokenizer(
a,
add_special_tokens=False,
max_length=args.max_atokens,
truncation=True,
padding="max_length",
)["input_ids"],
dtype=torch.long,
)
aid2tokid[aid] = tok
model.set_answer_embeddings(aid2tokid.to(device), freeze_last=args.freeze_last)
# Load video
print("loading visual backbone")
video_path = args.video_example
preprocess = Preprocessing()
backbone, _ = clip.load("ViT-L/14", download_root=MODEL_DIR, device=device)
backbone.eval()
# Extract frames from video
print("extracting visual features")
probe = ffmpeg.probe(video_path)
video_stream = next(
(stream for stream in probe["streams"] if stream["codec_type"] == "video"), None
)
width = int(video_stream["width"])
height = int(video_stream["height"])
num, denum = video_stream["avg_frame_rate"].split("/")
frame_rate = int(num) / int(denum)
if height >= width:
h, w = int(height * 224 / width), 224
else:
h, w = 224, int(width * 224 / height)
assert frame_rate >= 1
cmd = ffmpeg.input(video_path).filter("fps", fps=1).filter("scale", w, h)
x = int((w - 224) / 2.0)
y = int((h - 224) / 2.0)
cmd = cmd.crop(x, y, 224, 224)
out, _ = cmd.output("pipe:", format="rawvideo", pix_fmt="rgb24").run(
capture_stdout=True, quiet=True
)
h, w = 224, 224
video = np.frombuffer(out, np.uint8).reshape([-1, h, w, 3])
video = torch.from_numpy(video.astype("float32"))
video = video.permute(0, 3, 1, 2)
video = video.squeeze()
video = preprocess(video)
video = backbone.encode_image(video.to(device))
# Subsample or pad
if len(video) >= args.max_feats:
sampled = []
for j in range(args.max_feats):
sampled.append(video[(j * len(video)) // args.max_feats])
video = torch.stack(sampled)
video_len = args.max_feats
else:
video_len = len(video)
video = torch.cat(
[video, torch.zeros(args.max_feats - video_len, 768).to(device)], 0
)
video = video.unsqueeze(0).to(device)
video_mask = get_mask(
torch.tensor(video_len, dtype=torch.long).unsqueeze(0), video.size(1)
).to(device)
print("visual features extracted")
# Process question
question = args.question_example.capitalize().strip()
if question[-1] != "?":
question = str(question) + "?"
text = f"{args.prefix} Question: {question} Answer: {tokenizer.mask_token}{args.suffix}"
encoded = tokenizer(
[text],
add_special_tokens=True,
max_length=args.max_tokens,
padding="longest",
truncation=True,
return_tensors="pt",
)
input_ids = encoded["input_ids"].to(device)
attention_mask = encoded["attention_mask"].to(device)
if not args.suffix: # remove sep token if not using the suffix
attention_mask[input_ids == tokenizer.sep_token_id] = 0
input_ids[input_ids == tokenizer.sep_token_id] = tokenizer.pad_token_id
print("encoded text")
output = model(
video=video,
video_mask=video_mask,
input_ids=input_ids,
attention_mask=attention_mask,
)
logits = output["logits"]
delay = args.max_feats if args.use_video else 0
logits = logits[:, delay : encoded["input_ids"].size(1) + delay][
encoded["input_ids"] == tokenizer.mask_token_id
] # get the prediction on the mask token
logits = logits.softmax(-1)
topk = torch.topk(logits, 5, -1)
topk_txt = [[id2a[x.item()] for x in y] for y in topk.indices.cpu()]
topk_scores = [[f"{x:.2f}".format() for x in y] for y in topk.values.cpu()]
topk_all = [
[x + "(" + y + ")" for x, y in zip(a, b)] for a, b in zip(topk_txt, topk_scores)
]
print(f"Top 5 answers and scores: {topk_all[0]}")
if __name__ == "__main__":
parser = argparse.ArgumentParser(parents=[get_args_parser()])
args = parser.parse_args()
if args.save_dir:
args.save_dir = os.path.join(args.presave_dir, args.save_dir)
args.model_name = os.path.join(os.environ["TRANSFORMERS_CACHE"], args.model_name)
main(args)