-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmc_clip.py
238 lines (213 loc) · 7.6 KB
/
mc_clip.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import os
import torch
import numpy as np
import random
import json
import argparse
from util import dist
from torch.utils.data import DataLoader, DistributedSampler
from collections import namedtuple
from functools import reduce
from datasets import build_mc_dataset, mc_collate_fn
import clip
from args import get_args_parser, MODEL_DIR
from util.metrics import MetricLogger
@torch.no_grad()
def evaluate(
model: torch.nn.Module,
data_loader,
device: torch.device,
dataset_name,
args,
split="test",
type_map={0: "all"},
):
model.eval()
metric_logger = MetricLogger(delimiter=" ")
header = f"{split}:"
res = {}
for i_batch, batch_dict in enumerate(
metric_logger.log_every(data_loader, args.print_freq, header)
):
video = batch_dict["video"].to(device)
text = batch_dict["text"]
logits_list = []
for aid in range(len(text)):
encoded = clip.tokenize(text[aid], truncate=True).to(device)
text_features = model.encode_text(encoded)
logits = (
video[:, 0].float() @ (text_features.t().float())
).diag() # match visual and text features
logits_list.append(logits)
logits = torch.stack(logits_list, 1)
if logits.shape[1] == 1:
preds = logits.round().long().squeeze(1)
else:
preds = logits.max(1).indices
qids = batch_dict["qid"]
types = batch_dict["type"]
if batch_dict["answer_id"][0].item() != -1:
answer_id = batch_dict["answer_id"].to(device)
agreeings = preds == answer_id
for i, (qid, gt, pred, type) in enumerate(
zip(qids, answer_id, preds, types)
):
res[qid] = (
{
"pred": pred.cpu().detach().item(),
"gt": gt.cpu().detach().item(),
"type": int(type),
}
if type_map is not None and len(type_map) > 1
else {
"pred": pred.cpu().detach().item(),
"gt": gt.cpu().detach().item(),
}
)
res[qid][f"acc"] = agreeings[i].cpu().detach().item()
dico = {"acc": agreeings.sum() / len(qids)}
dico_reduced = dist.reduce_dict(dico)
acc_value = dico_reduced["acc"].item()
metric_logger.update(acc=acc_value)
else:
for i, (qid, pred, type) in enumerate(zip(qids, preds, types)):
res[str(qid)] = int(pred.cpu().detach().item())
all_res = dist.all_gather(res)
results = reduce(lambda a, b: a.update(b) or a, all_res, {})
assert len(results) == len(data_loader.dataset)
if isinstance(next(iter(results.values())), dict):
acc = sum(int(results[qid][f"acc"]) for qid in results) / len(results)
if type_map is not None and len(type_map) > 1:
acc_type = {
type_map[i]: sum(
results[qid][f"acc"] for qid in results if results[qid]["type"] == i
)
/ len([x for x in results.values() if x["type"] == i])
for i in type_map
}
if dist.is_main_process():
print(dataset_name)
print(f"{split} acc: {acc: .2%}")
if type_map is not None and len(type_map) > 1:
for x in acc_type:
print(f"acc {x}: {acc_type[x]: .2%}")
return results, acc
else:
return results, 0
def main(args):
# Init distributed mode
dist.init_distributed_mode(args)
if dist.is_main_process():
if args.save_dir and not (os.path.isdir(args.save_dir)):
os.makedirs(os.path.join(args.save_dir), exist_ok=True)
print(args)
device = torch.device(args.device)
# Fix seeds
seed = args.seed + dist.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
# Build model
assert args.max_feats == 1 # clip
model, _ = clip.load("ViT-L/14", download_root=MODEL_DIR, device=device)
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
if dist.is_main_process():
print("number of params:", n_parameters)
nt = namedtuple(
typename="data",
field_names=[
"dataset_name",
"dataloader_test",
"dataloader_val",
],
)
tuples = []
if not args.eval:
raise NotImplementedError
for dset_name in args.combine_datasets_val:
dataset_test = build_mc_dataset(
dset_name,
"val" if (args.eval and not args.test) else "test",
args,
None,
)
sampler_test = (
DistributedSampler(dataset_test, shuffle=False)
if args.distributed
else torch.utils.data.SequentialSampler(dataset_test)
)
dataloader_test = DataLoader(
dataset_test,
batch_size=args.batch_size_val,
sampler=sampler_test,
collate_fn=mc_collate_fn,
num_workers=args.num_workers,
)
dataset_val = build_mc_dataset(dset_name, "val", args, None)
sampler_val = (
DistributedSampler(dataset_val, shuffle=False)
if args.distributed
else torch.utils.data.SequentialSampler(dataset_val)
)
dataloader_val = DataLoader(
dataset_val,
batch_size=args.batch_size_val,
sampler=sampler_val,
collate_fn=mc_collate_fn,
num_workers=args.num_workers,
)
tuples.append(
nt(
dataset_name=dset_name,
dataloader_test=dataloader_test,
dataloader_val=dataloader_val,
)
)
# Load pretrained checkpoint
if args.load:
if dist.is_main_process():
print("loading from", args.load)
checkpoint = torch.load(args.load, map_location="cpu")
model.load_state_dict(checkpoint["model"], strict=False)
for i, item in enumerate(tuples):
results, acc = evaluate(
model=model,
data_loader=item.dataloader_test,
device=device,
dataset_name=item.dataset_name,
args=args,
type_map=item.dataloader_test.dataset.type_map,
split="val" if (args.eval and not args.test) else "test",
)
if args.save_dir and dist.is_main_process():
json.dump(
results,
open(
os.path.join(
args.save_dir,
item.dataset_name + "_val.json"
if (args.eval and not args.test)
else item.dataset_name + "_test.json",
),
"w",
),
)
json.dump(
{"acc": float(acc)},
open(
os.path.join(
args.save_dir,
item.dataset_name + "acc_val.json"
if (args.eval and not args.test)
else item.dataset_name + "acc_test.json",
),
"w",
),
)
if __name__ == "__main__":
parser = argparse.ArgumentParser(parents=[get_args_parser()])
args = parser.parse_args()
if args.save_dir:
args.save_dir = os.path.join(args.presave_dir, args.save_dir)
args.model_name = os.path.join(os.environ["TRANSFORMERS_CACHE"], args.model_name)
main(args)