-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmains.py
551 lines (468 loc) · 28 KB
/
mains.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
import argparse
import os
import sys
import random
import time
import torch
import cv2
import math
import numpy as np
import torch.backends.cudnn as cudnn
from torch.optim import Adam
from torch.utils.data import DataLoader
from tensorboardX import SummaryWriter
from torchnet import meter
import utils
import json
from data.load_data import loadingData
from data.load_test_data import loadingTestData
from BlockModule import DeepShare
from basicModule import *
import scipy.io
# loss
from Loss import HybridLoss, CrossEntropy2d
from metrics import quality_assessment
from torch.autograd import Variable
# global settings
resume = False
log_interval = 50
model_name = ''
test_data_dir = ''
def main():
# parsers UseUnLabeledMixUp
main_parser = argparse.ArgumentParser(description="parser for SR network")
subparsers = main_parser.add_subparsers(title="subcommands", dest="subcommand")
train_parser = subparsers.add_parser("train", help="parser for training arguments")
train_parser.add_argument("--cuda", type=int, required=False, default=1,
help="set it to 1 for running on GPU, 0 for CPU")
train_parser.add_argument("--batch_size", type=int, required=True, help="batch size, default set to 64")
train_parser.add_argument("--UseLabeledSpectralMixUp", type=int, default=0, help="if we use gan loss, 0 for false, 1 for yes")
train_parser.add_argument("--theta_LabeledSpectralMixUp", type=int, default=0, help="if we use gan loss, 0 for false, 1 for yes")
train_parser.add_argument("--UseUnlabelConsistency", type=int, default=0, help="if we use unlabeled consistency, 0 for false, 1 for yes")
train_parser.add_argument("--UseRGB", type=int, default=0, help="if we use rgb, 0 for false, 1 for yes")
train_parser.add_argument("--epochs", type=int, default=10, help="epochs, default set to 20")
train_parser.add_argument("--conversionMat_path", type=str, default="./data/conversion_8channels.mat", help="path to conversion matrix transforming spectral images of 31 channels to images of 8 channels ")
train_parser.add_argument("--n_feats", type=int, default=256, help="n_feats, default set to 256")
train_parser.add_argument("--n_blocks", type=int, default=3, help="n_blocks, default set to 6")
train_parser.add_argument("--n_subs", type=int, default=8, help="n_subs, default set to 8")
train_parser.add_argument("--n_ovls", type=int, default=2, help="n_ovls, default set to 1")
train_parser.add_argument("--n_scale", type=int, default=4, help="n_scale, default set to 2")
train_parser.add_argument("--use_share", type=bool, default=True, help="f_share, default set to 1")
train_parser.add_argument("--dataset_name", type=str, required=True, help="dataset_name, default set to dataset_name")
train_parser.add_argument("--train_dir_mslabel", type=str, required=True, help="directory of train spectral dataset")
train_parser.add_argument("--train_dir_msunlabel", type=str,
help="directory of train spectral dataset")
train_parser.add_argument("--eval_dir_ms", type=str, help="directory of evaluation spectral dataset")
train_parser.add_argument("--test_dir", type=str, required=True, help="directory of test spectral dataset")
train_parser.add_argument("--train_dir_rgb", type=str, help="directory of train rgb dataset")
train_parser.add_argument("--theta_rgb", type=int, default=3, help="how many times of rgb images regard to ms images")
train_parser.add_argument("--theta_unlabel", type=int, default=3, help="how many times of unlabel ms images regard to ms label images")
train_parser.add_argument("--data_train_num", type=int, required=True, help="how many .mat files used in each epoch")
train_parser.add_argument("--data_eval_num", type=int, help="how many .mat files used in each epoch")
train_parser.add_argument("--data_test_num", type=int, required=True, help="how many .mat files used in each epoch")
train_parser.add_argument("--model_title", type=str, default="DeepShare",
help="model_title, default set to model_title")
train_parser.add_argument("--seed", type=int, default=3000, help="start seed for model")
train_parser.add_argument("--learning_rate", type=float, default=1e-4,
help="learning rate, default set to 1e-4")
train_parser.add_argument("--weight_decay", type=float, default=0, help="weight decay, default set to 0")
train_parser.add_argument("--save_dir", type=str, default="./trained_model/",
help="directory for saving trained models, default is trained_model folder")
train_parser.add_argument("--gpus", type=str, default="0", help="gpu ids (default: 7)")
test_parser = subparsers.add_parser("test", help="parser for testing arguments")
test_parser.add_argument("--cuda", type=int, required=False, default=1,
help="set it to 1 for running on GPU, 0 for CPU")
test_parser.add_argument("--gpus", type=str, default="0", help="gpu ids (default: 7)")
test_parser.add_argument("--test_dir", type=str, required=True, help="directory of test spectral dataset")
test_parser.add_argument("--model_dir", type=str, required=True, help="directory of trained model")
test_parser.add_argument("--n_feats", type=int, default=256, help="n_feats, default set to 256")
test_parser.add_argument("--n_blocks", type=int, default=3, help="n_blocks, default set to 6")
test_parser.add_argument("--n_subs", type=int, default=8, help="n_subs, default set to 8")
test_parser.add_argument("--n_ovls", type=int, default=2, help="n_ovls, default set to 1")
test_parser.add_argument("--n_colors", type=int, required=True, help="n_colors, default set to 31")
test_parser.add_argument("--n_scale", type=int, default=4, help="n_scale, default set to 2")
test_parser.add_argument("--model_title", type=str, default="DeepShare",
help="model_title, default set to model_title")
test_parser.add_argument("--result_path", type=str, default="./Result",
help="result_path, directory of result")
test_parser.add_argument("--data_test_num", type=int, required=True, help="how many .mat files used in each epoch")
args = main_parser.parse_args()
print(args.gpus)
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpus
if args.subcommand is None:
print("ERROR: specify either train or test")
sys.exit(1)
if args.cuda and not torch.cuda.is_available():
print("ERROR: cuda is not available, try running on CPU")
sys.exit(1)
if args.subcommand == "train":
train(args)
else:
test(args)
pass
bce_loss = torch.nn.BCEWithLogitsLoss()
def loss_calc(pred, label, device):
"""
This function returns cross entropy loss for semantic segmentation
"""
# out shape batch_size x channels x h x w -> batch_size x channels x h x w
# label shape h x w x 1 x batch_size -> batch_size x 1 x h x w
label = Variable(label.long()).to(device)
criterion = CrossEntropy2d().to(device)
return criterion(pred, label)
def train(args):
device = torch.device("cuda" if args.cuda else "cpu")
# args.seed = random.randint(1, 10000)
print("Start seed: ", args.seed)
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
cudnn.benchmark = True
#load conversion_matrix and by multiplying the conversion matrix with images, we can get images with 8 channels
conversion_matix = scipy.io.loadmat(args.conversionMat_path) #("~/Data/Chikusei/conversion_matrix_128_8.mat") #
conversion_matix = np.array(conversion_matix['conversion_matrx'], dtype=np.float32)
conversion_matix = torch.from_numpy(conversion_matix.copy())
conversion_matix = conversion_matix.to(device)
print('===> Loading datasets')
train_mslabel_set = loadingData(image_dir=args.train_dir_mslabel, augment=True, total_num=args.data_train_num)
train_msunlabel_set = loadingData(image_dir=args.train_dir_msunlabel, augment=True, total_num=args.theta_unlabel*args.data_train_num)
train_rgb_set = loadingData(image_dir=args.train_dir_rgb, augment=True, total_num=args.theta_rgb*args.data_train_num)
eval_mslabel_set = loadingData(image_dir=args.eval_dir_ms, augment=False, total_num=args.data_eval_num)
eval_ms_loader = DataLoader(eval_mslabel_set, batch_size=args.batch_size, num_workers=4, shuffle=False)
if args.dataset_name == 'Cave':
colors = 31
elif args.dataset_name == 'NTIRE2020':
colors = 31
elif args.dataset_name == 'Harvard':
colors = 31
else:
colors = 128
print('===> Building model')
if args.model_title =="DeepShare":
net = DeepShare(n_subs=args.n_subs, n_ovls=args.n_ovls, n_colors=colors, n_blocks=args.n_blocks, n_feats=args.n_feats,
n_scale=args.n_scale, res_scale=0.1, use_share=args.use_share, conv=default_conv)
model_title = args.dataset_name + "_" + args.model_title + '_Blocks=' + str(args.n_blocks) + '_Subs' + str(
args.n_subs) + '_Ovls' + str(args.n_ovls) + '_Feats=' + str(args.n_feats)
model_name = './checkpoints/' + model_title + "_ckpt_epoch_" + str(40) + ".pth"
args.model_title = model_title
if torch.cuda.device_count() > 1:
print("===> Let's use", torch.cuda.device_count(), "GPUs.")
net = torch.nn.DataParallel(net)
start_epoch = 0
if resume:
if os.path.isfile(model_name):
print("=> loading checkpoint '{}'".format(model_name))
checkpoint = torch.load(model_name)
start_epoch = checkpoint["epoch"]
net.load_state_dict(checkpoint["model"].state_dict())
#state_dict = torch.load(model_name)
#net.load_state_dict(state_dict, strict=False)
else:
print("=> no checkpoint found at '{}'".format(model_name))
net.to(device).train()
# loss functions to choose
# mse_loss = torch.nn.MSELoss()
h_loss = HybridLoss(spatial_tv=True, spectral_tv=True)
L1_loss = torch.nn.L1Loss()
print("===> Setting optimizer and logger")
# add L2 regularization
optimizer = Adam(net.parameters(), lr=args.learning_rate, weight_decay=args.weight_decay)
epoch_meter_mslabel = meter.AverageValueMeter()
epoch_meter_mslabelmixup = meter.AverageValueMeter()
epoch_meter_mslabelrgb = meter.AverageValueMeter()
epoch_meter_msunlabelmixup = meter.AverageValueMeter()
epoch_meter_msunlabel = meter.AverageValueMeter()
epoch_meter_rgb = meter.AverageValueMeter()
writer = SummaryWriter('runs/' + model_title + '_' + str(time.ctime()))
print('===> Start training')
for e in range(start_epoch, args.epochs):
adjust_learning_rate(args.learning_rate, optimizer, e + 1, args.epochs)
epoch_meter_mslabel.reset()
print("Start epoch {}, labeled ms learning rate = {}".format(e + 1, optimizer.param_groups[0]["lr"]))
epoch_meter_mslabelmixup.reset()
epoch_meter_msunlabel.reset()
epoch_meter_mslabelrgb.reset()
epoch_meter_msunlabelmixup.reset()
epoch_meter_rgb.reset()
iteration = 0
train_mslabel_loader = DataLoader(train_mslabel_set, batch_size=args.batch_size, num_workers=4, shuffle=True)
train_msunlabel_loader = DataLoader(train_msunlabel_set, batch_size=args.theta_unlabel*args.batch_size, num_workers=4, shuffle=True)
train_rgb_loader = DataLoader(train_rgb_set, batch_size=args.theta_rgb * args.batch_size, num_workers=4, shuffle=True)
train_mslabel_iter = iter(train_mslabel_loader)
train_msunlabel_iter = iter(train_msunlabel_loader)
train_rgb_iter = iter(train_rgb_loader)
for batch_mslabel, batch_msunlabel, batch_rgb in zip(train_mslabel_iter, train_msunlabel_iter, train_rgb_iter):
# training for spectral images
x, lms, gt = batch_mslabel
x, lms, gt = x.to(device), lms.to(device), gt.to(device)
optimizer.zero_grad()
y_ms_l = net(x, lms, modality="spectral")
loss = h_loss(y_ms_l, gt)
epoch_meter_mslabel.add(loss.item())
loss.backward()
optimizer.step()
# tensorboard visualization
if (iteration + log_interval) % log_interval == 0:
print("===> {} B{} Sub{} Fea{} GPU{}\tEpoch[{}]({}/{}): ms Loss: {:.6f}".format(time.ctime(),
args.n_blocks,
args.n_subs,
args.n_feats,
args.gpus, e + 1,
iteration + 1,
len(train_mslabel_loader),
loss.item()))
n_iter = e * len(train_mslabel_loader) + iteration + 1
writer.add_scalar('scalar/train_loss_ms', loss, n_iter)
if args.UseLabeledSpectralMixUp == 1 and e<=(args.epochs-1):
# spectral mixup on labeled data
bsize, fsize, hsize, wsize = gt.shape
for mixid in range(args.theta_LabeledSpectralMixUp):
conversion_matrix_rand = np.random.rand(fsize,fsize)
conversion_matrix_rand = np.array(conversion_matrix_rand/(np.mean(np.sum(conversion_matrix_rand, axis=0))), dtype=np.float32)
conversion_matrix_rand = torch.from_numpy(conversion_matrix_rand)
conversion_matrix_rand = conversion_matrix_rand.to(device)
x_mixup, lms_mixup, gt_mixup = (x + conversion(x, conversion_matrix_rand))/2, (lms + conversion(lms,conversion_matrix_rand))/2, (gt + conversion(gt, conversion_matrix_rand))/2
optimizer.zero_grad()
y_ms_l = net(x_mixup, lms_mixup, modality="spectral")
loss = h_loss(y_ms_l, gt_mixup)
epoch_meter_mslabelmixup.add(loss.item())
loss.backward()
optimizer.step()
# tensorboard visualization
if (iteration + log_interval) % log_interval == 0:
print("===> {} B{} Sub{} Fea{} GPU{}\tEpoch[{}]({}/{}): ms spectral mixup Loss: {:.6f}".format(time.ctime(),
args.n_blocks,
args.n_subs,
args.n_feats,
args.gpus, e + 1,
iteration + 1,
len(train_mslabel_loader),
loss.item()))
n_iter = e * len(train_mslabel_loader) + iteration + 1
writer.add_scalar('scalar/train_loss_ms_mixup', loss, n_iter)
# training for rgb images batch 1
if args.UseRGB == 1 and e<=(args.epochs-1):
x, lms, gt_rgb = batch_rgb
x, lms, gt_rgb = x.to(device), lms.to(device), gt_rgb.to(device)
y_rgb = torch.zeros(gt_rgb.size())
for i in range(0, args.theta_rgb):
x_i, lms_i, gt_i = x[i*args.batch_size:(i+1)*args.batch_size,:,:,:], lms[i*args.batch_size:(i+1)*args.batch_size,:,:,:], gt_rgb[i*args.batch_size:(i+1)*args.batch_size,:,:,:]
optimizer.zero_grad()
y_rgb_i = net(x_i, lms_i, modality="rgb")
y_rgb[i*args.batch_size:(i+1)*args.batch_size,:,:,:] = y_rgb_i
loss = h_loss(y_rgb_i, gt_i)
epoch_meter_rgb.add(loss.item())
loss.backward()
optimizer.step()
if (iteration + log_interval) % log_interval == 0:
print("===> {} B{} Sub{} Fea{} GPU{}\tEpoch[{}]({}/{}): rgb Loss: {:.6f}".format(time.ctime(),
args.n_blocks,
args.n_subs,
args.n_feats,
args.gpus,
e + 1,
iteration + 1,
len(train_rgb_loader),
loss.item()))
n_iter = e * len(train_rgb_loader) + iteration + 1
writer.add_scalar('scalar/train_loss_rgb', loss, n_iter)
# #transfer HR 31 channels to 8 channels, then check the consistency.
if args.UseUnlabelConsistency == 1 and e<=(args.epochs/2):
x, lms, gt = batch_msunlabel
x, lms = x.to(device), lms.to(device)
x_cvt, lms_cvt = conversion(x, conversion_matix), conversion(lms, conversion_matix)
x_cvt, lms_cvt = x_cvt.to(device), lms_cvt.to(device)
for j in range(0, args.theta_unlabel):
x_j, lms_j, x_cvt_j, lms_cvt_j = x[j*args.batch_size:(j+1)*args.batch_size,:,:,:], lms[j*args.batch_size:(j+1)*args.batch_size,:,:,:], x_cvt[j*args.batch_size:(j+1)*args.batch_size,:,:,:], lms_cvt[j*args.batch_size:(j+1)*args.batch_size,:,:,:]
optimizer.zero_grad()
y_ms = net(x_j, lms_j, modality="spectral")
rgb_from_ms = conversion(y_ms, conversion_matix)
y_rgb_cvt = net(x_cvt_j, lms_cvt_j, modality="rgb")
loss = h_loss(rgb_from_ms, y_rgb_cvt)
epoch_meter_msunlabel.add(loss.item())
loss.backward(retain_graph=True)
optimizer.step()
# tensorboard visualization
if (iteration + log_interval) % log_interval == 0:
print("===> {} B{} Sub{} Fea{} GPU{}\tEpoch[{}]({}/{}): unlabeled ms consistency Loss: {:.6f}".format(
time.ctime(),
args.n_blocks,
args.n_subs,
args.n_feats,
args.gpus, e + 1,
iteration + 1,
len(train_mslabel_loader),
loss.item()))
n_iter = e * len(train_mslabel_loader) + iteration + 1
writer.add_scalar('scalar/train_loss_unlabeled_ms_mixup', loss, n_iter)
iteration += 1
print("===> {}\tEpoch {} Training mslabel Complete: Avg. Loss: {:.6f}".format(time.ctime(), e + 1,
epoch_meter_mslabel.value()[0]))
print("===> {}\tEpoch {} Training msunlabel Complete: Avg. Loss: {:.6f}".format(time.ctime(), e + 1,
epoch_meter_msunlabel.value()[0]))
print("===> {}\tEpoch {} Training rgb Complete: Avg. Loss: {:.6f}".format(time.ctime(), e + 1,
epoch_meter_rgb.value()[0]))
# run validation set every epoch
eval_loss_ms = validate(args, eval_ms_loader, "spectral", net, L1_loss, args.theta_rgb)
# tensorboard visualization
writer.add_scalar('scalar/avg_epoch_loss_mslabel', epoch_meter_mslabel.value()[0], iteration)
writer.add_scalar('scalar/avg_validation_loss_ms', eval_loss_ms, iteration)
writer.add_scalar('scalar/avg_epoch_loss_msunlabel', epoch_meter_msunlabel.value()[0], iteration)
writer.add_scalar('scalar/avg_epoch_loss_rgb', epoch_meter_rgb.value()[0], iteration)
# save model weights at checkpoints every 10 epochs
#if (e + 1) % 5 == 0:
save_checkpoint(args, net, e + 1)
# save model after training
net.eval().cpu()
save_model_filename = model_title + "_epoch_" + str(args.epochs) + "_" + \
str(time.ctime()).replace(' ', '_') + ".pth"
save_model_path = os.path.join(args.save_dir, save_model_filename)
if torch.cuda.device_count() > 1:
torch.save(net.module.state_dict(), save_model_path)
else:
torch.save(net.state_dict(), save_model_path)
print("\nDone, trained model saved at", save_model_path)
## Save the testing results
print("Running testset")
print('===> Loading testset')
test_set = loadingTestData(image_dir=args.test_dir, augment=False)
test_loader = DataLoader(test_set, batch_size=1, shuffle=False)
print('===> Start testing')
net.eval().cuda()
with torch.no_grad():
output = []
test_number = 0
for i, (x, lms, gt) in enumerate(test_loader):
x, lms, gt = x.to(device), lms.to(device), gt.to(device)
y = net(x, lms, modality="spectral")
y, gt = y.squeeze().cpu().numpy().transpose(1, 2, 0), gt.squeeze().cpu().numpy().transpose(1, 2, 0)
y = y[:gt.shape[0], :gt.shape[1], :]
if i == 0:
indices = quality_assessment(gt, y, data_range=1., ratio=4)
else:
indices = sum_dict(indices, quality_assessment(gt, y, data_range=1., ratio=4))
output.append(y)
test_number += 1
for index in indices:
indices[index] = indices[index] / test_number
# save_dir = "/data/test.npy"
save_dir = model_title + '.npy'
np.save(save_dir, output)
print("Test finished, test results saved to .npy file at ", save_dir)
print(indices)
QIstr = model_title + '_' + str(time.ctime()) + ".txt"
json.dump(indices, open(QIstr, 'w'))
def conversion(m_input, m_conversion):
b, c, h, w = m_input.shape
m_input = m_input.permute(0, 3, 2, 1)
m_input = torch.reshape(m_input, (b * w * h, c))
x, y = m_conversion.shape
if c == x:
m_new = torch.matmul(m_input, m_conversion)
m_new = torch.reshape(m_new, (b, w, h, y))
m_new = m_new.permute(0, 3, 2, 1)
return m_new
else:
raise
# print("Wrong dimensions for matrix multiplication")
def sum_dict(a, b):
temp = dict()
for key in a.keys() | b.keys():
temp[key] = sum([d.get(key, 0) for d in (a, b)])
return temp
def adjust_learning_rate(start_lr, optimizer, epoch, total_epoch_num):
"""Sets the learning rate to the initial LR decayed by 10 every 50 epochs"""
#lr = start_lr * (0.1 ** (epoch // 30))
lr = start_lr * (0.3 ** (epoch // 5))
if epoch==total_epoch_num:
lr = lr * 0.3
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def adjust_learning_rate_D(start_lr, optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 10 every 50 epochs"""
#lr = start_lr * (0.1 ** (epoch // 30))
lr = start_lr * (0.3 ** (epoch // 5))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def validate(args, loader, modality, model, criterion, theta):
device = torch.device("cuda" if args.cuda else "cpu")
# switch to evaluate mode
model.eval()
epoch_meter = meter.AverageValueMeter()
epoch_meter.reset()
with torch.no_grad():
if modality == "spectral":
for i, (ms, lms, gt) in enumerate(loader):
ms, lms, gt = ms.to(device), lms.to(device), gt.to(device)
# y = model(ms)
y = model(ms, lms, modality)
loss = criterion(y, gt)
epoch_meter.add(loss.item())
elif modality == "rgb":
for i, (ms, lms, gt) in enumerate(loader):
for j in range(0, theta):
ms_j, lms_j, gt_j = ms[j*args.batch_size:(j+1)*args.batch_size,:,:,:], lms[j*args.batch_size:(j+1)*args.batch_size,:,:,:], gt[j*args.batch_size:(j+1)*args.batch_size,:,:,:]
ms_j, lms_j, gt_j = ms_j.to(device), lms_j.to(device), gt_j.to(device)
# y = model(ms)
y = model(ms_j, lms_j, modality)
loss = criterion(y, gt_j)
epoch_meter.add(loss.item())
mesg = "===> {}\tEpoch {} evaluation Complete: Avg. Loss: {:.6f}".format(time.ctime(), modality, epoch_meter.value()[0])
print(mesg)
# back to training mode
model.train()
return epoch_meter.value()[0]
def test(args):
device = torch.device("cuda" if args.cuda else "cpu")
print('===> Loading testset')
test_set = loadingTestData(image_dir=args.test_dir, augment=False)
test_loader = DataLoader(test_set, batch_size=1, shuffle=False)
print('===> Start testing')
with torch.no_grad():
epoch_meter = meter.AverageValueMeter()
epoch_meter.reset()
# loading model
model = DeepShare(n_subs=args.n_subs, n_ovls=args.n_ovls, n_colors=args.n_colors, n_blocks=args.n_blocks, n_feats=args.n_feats,
n_scale=args.n_scale, res_scale=0.1, use_share=True, conv=default_conv)
state_dict = torch.load(args.model_dir)
model.load_state_dict(state_dict, strict=False)
#checkpoint = torch.load(args.model_dir)
#model.load_state_dict(checkpoint["model"].state_dict())
model.to(device).eval()
mse_loss = torch.nn.MSELoss()
output = []
test_number = 0
for i, (x, lms, gt) in enumerate(test_loader):
x, lms, gt = x.to(device), lms.to(device), gt.to(device)
y = model(x, lms, modality="spectral")
y, gt = y.squeeze().cpu().numpy().transpose(1, 2, 0), gt.squeeze().cpu().numpy().transpose(1, 2, 0)
y = y[:gt.shape[0], :gt.shape[1], :]
if i == 0:
indices = quality_assessment(gt, y, data_range=1., ratio=4)
else:
indices = sum_dict(indices, quality_assessment(gt, y, data_range=1., ratio=4))
output.append(y)
test_number += 1
for index in indices:
indices[index] = indices[index] / test_number
# save_dir = "/data/test.npy"
save_dir = args.result_path + args.model_title + '.npy'
np.save(save_dir, output)
print("Test finished, test results saved to .npy file at ", save_dir)
print(indices)
QIstr = args.model_title + '_' + str(time.ctime()) + ".txt"
json.dump(indices, open(QIstr, 'w'))
def save_checkpoint(args, model, epoch):
device = torch.device("cuda" if args.cuda else "cpu")
model.eval().cpu()
checkpoint_model_dir = './checkpoints/'
if not os.path.exists(checkpoint_model_dir):
os.makedirs(checkpoint_model_dir)
ckpt_model_filename = args.dataset_name + "_" + args.model_title + "_ckpt_epoch_" + str(epoch) + ".pth"
ckpt_model_path = os.path.join(checkpoint_model_dir, ckpt_model_filename)
state = {"epoch": epoch, "model": model}
torch.save(state, ckpt_model_path)
model.to(device).train()
print("Checkpoint saved to {}".format(ckpt_model_path))
if __name__ == "__main__":
main()