-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathaperdrift.py
229 lines (185 loc) · 11.9 KB
/
aperdrift.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# aperdrift: Schedule a drift scan on a calibrator
# K.M.Hess 19/02/2019 ([email protected])
__author__ = "Kelley M. Hess"
__date__ = "$28-apr-2019 16:00:00$"
__version__ = "0.5"
import datetime
from argparse import ArgumentParser, RawTextHelpFormatter
from astropy.coordinates import SkyCoord, FK5
from astropy.table import Table, unique
from astropy.time import Time,TimeDecimalYear
from astropy import units as u
import matplotlib.pyplot as plt
import numpy as np
from modules.calibrators import *
from modules.telescope_params import westerbork
###################################################################
# Define some specific functions for drift scans
def read_beams():
beams = Table.read('ancillary/pattern39+1.txt', format='ascii')
return beams
def do_drift(obstime_utc, drift_time):
return obstime_utc + datetime.timedelta(minutes=drift_time)
def parse_args():
parser = ArgumentParser(
description="Make a driftscan schedule for the Apertif imaging surveys.",
formatter_class=RawTextHelpFormatter)
parser.add_argument('-d', '--drifts_per_beam', default=1,
help='Specify the number of drifts per beam line (default: %(default)s).\n 1 & even numbers drift through bm00.')
parser.add_argument('-c', '--calib', default='3C147',
help='Specify the calibrator. (default: %(default)s).')
parser.add_argument('-s', "--starttime_utc", default="2019-04-25 16:00:00", #"2019-04-25 07:35:00",
help="The start time in ** UTC ** ! - format 'YYYY-MM-DD HH:MM:SS' (default: '%(default)s').",
type=datetime.datetime.fromisoformat)
parser.add_argument('-o', '--output', default='_temp',
help="Specify the root of output csv and png files (default: CALname_driftDATE%(default)s.csv.)")
parser.add_argument('-v', "--verbose",
help="If option is included, print time estimate for several drift combos.",
action='store_true')
args = parser.parse_args()
return args
###################################################################
def main():
args = parse_args()
# User supplied **UTC** start time:
start_obstime_utc = args.starttime_utc
current_lst = Time(start_obstime_utc).sidereal_time('apparent', westerbork().lon)
# User supplied calibrator:
calib_name = args.calib
drift_cal = SkyCoord.from_name(calib_name)
# Convert to apparent coordinates for setting up the observations
test = drift_cal.transform_to('fk5')
drift_cal = test.transform_to(FK5(equinox='J'+str(Time(start_obstime_utc).decimalyear)))
print("\n##################################################################")
print("Calibrator is: {}".format(calib_name))
print("Calibrator position is: {} in J{:7.2f} coordinates".format(drift_cal.to_string('hmsdms'), Time(start_obstime_utc).decimalyear))
print("\t in degrees: {} {}".format(drift_cal.ra.deg, drift_cal.dec.deg))
print("Starting LST is :", current_lst)
wrap = 0 * u.hourangle
if (current_lst-drift_cal.ra).value > 12.0:
wrap = 24 * u.hourangle
if (current_lst-drift_cal.ra).value < -12.0:
wrap = -24 * u.hourangle
print("Starting HA of calibrator is: {}".format(current_lst-drift_cal.ra-wrap))
if np.abs((current_lst-drift_cal.ra-wrap).hourangle) > 6.:
print("CALIBRATOR IS NOT ACTUALLY UP (but calculations are still right).")
print("")
beams = read_beams()
rows = np.array(unique(beams, keys='dDec'))
diff = rows[0][1] - rows[1][1]
print("Starting observations! UTC: {}".format(args.starttime_utc))
# Calculate the starting position of the beams and the length of the drift
# (Do for multiple options which will print if ags.verbose = True):
for n in range(1, 5):
# Only include explicit drift through beam 0 if only drifting through peak.
if n > 1:
r_nozero = np.delete(rows, 3)
else:
r_nozero = rows
dec_cen = []
dec_row = []
ra_start = []
ha_start = []
ha_end = []
drift_time = []
# Add drifts at the start
if n > 1:
# for i in range(n + 0, 0, -1): # changed from n-1
# dec_row.append(drift_cal.dec.deg + rows[0][1] + (diff) / (n-1) * i)
# dec_cen.append(drift_cal.dec.deg - rows[0][1] - (diff) / (n-1) * i)
for i in range(n + 2, 0, -1): # Regular density of scans outside first row
dec_row.append(drift_cal.dec.deg + rows[0][1] + (diff) / (n) * i)
dec_cen.append(drift_cal.dec.deg - rows[0][1] - (diff) / (n) * i)
# Drift starts at high RA, low HA
ha_start.append(np.min(beams[np.where(beams['dDec'] == rows[0][1])]['dHA']))
ha_end.append(np.max(beams[np.where(beams['dDec'] == rows[0][1])]['dHA']))
ra_start.append(drift_cal.ra.deg + (ha_start[-1] - 0.9) / np.cos(dec_row[-1] * u.deg))
drift_time.append((np.abs(ha_end[-1] - ha_start[-1] + 1.8) / np.cos((dec_row[-1]) * u.deg)) * 12. / 180. * 60. * u.min)
# Do drifts for all the beams
for r in r_nozero[:-1]:
for i in range(n):
dec_row.append(drift_cal.dec.deg + r[1] - (diff) / n * i)
dec_cen.append(drift_cal.dec.deg - r[1] + (diff) / n * i)
ha_start.append(np.min(beams[np.where(beams['dDec'] == r[1])]['dHA']))
ha_end.append(np.max(beams[np.where(beams['dDec'] == r[1])]['dHA']))
ra_start.append(drift_cal.ra.deg + (ha_start[-1] - 0.9) / np.cos(dec_row[-1] * u.deg))
drift_time.append((np.abs(ha_end[-1] - ha_start[-1] + 1.8) / np.cos((dec_row[-1]) * u.deg)) * 12. / 180. * 60. * u.min)
# Add drifts at the end
if n == 1:
dec_row.append (drift_cal.dec.deg + rows[-1][1] - (diff) / (n) * i)
dec_cen.append (drift_cal.dec.deg - rows[-1][1] + (diff) / (n) * i)
# Drift starts at high RA, low HA
ha_start.append (np.min (beams[np.where (beams['dDec'] == rows[-1][1])]['dHA']))
ha_end.append (np.max (beams[np.where (beams['dDec'] == rows[-1][1])]['dHA']))
ra_start.append (drift_cal.ra.deg + (ha_start[-1] - 0.75) / np.cos (dec_row[-1] * u.deg))
drift_time.append ((np.abs (ha_end[-1] - ha_start[-1] + 1.5) / np.cos ((dec_row[-1]) * u.deg)) * 12. / 180. * 60. * u.min)
if n > 1:
for i in range(0, n+3): # changed from n-1
dec_row.append(drift_cal.dec.deg + rows[-1][1] - (diff) / (n) * i)
dec_cen.append(drift_cal.dec.deg - rows[-1][1] + (diff) / (n) * i)
# Drift starts at high RA, low HA
ha_start.append(np.min(beams[np.where(beams['dDec'] == rows[-1][1])]['dHA']))
ha_end.append(np.max(beams[np.where(beams['dDec'] == rows[-1][1])]['dHA']))
ra_start.append(drift_cal.ra.deg + (ha_start[-1] - 0.75) / np.cos(dec_row[-1] * u.deg))
drift_time.append((np.abs(ha_end[-1] - ha_start[-1] + 1.5) / np.cos((dec_row[-1]) * u.deg)) * 12. / 180. * 60. * u.min)
start_pos = SkyCoord(ra=np.array(ra_start), dec=dec_cen, unit='deg')
if args.verbose and (int(args.drifts_per_beam) != n):
print("Drift time: {}".format([drift_time[i].value for i in range(len(drift_time))]))
print("Number of drifts/beam (approx): {}.".format(n))
print("Total time: {}.\n".format(np.ceil(sum(drift_time) + 2. * (len(drift_time)-1) * u.min)))
if (args.verbose and int(args.drifts_per_beam) == n) or (int(args.drifts_per_beam) == n):
print("Drift time: {}".format([drift_time[i].value for i in range(len(drift_time))]))
print("Number of drifts/beam (approx): {}.".format(n))
print("Total time: {}.\n".format(np.ceil(sum(drift_time) + 2. * (len(drift_time)-1) * u.min)))
# Plot and save the drifts for the one actually requested:
fig, ax = plt.subplots(figsize=(12, 6))
ax.scatter(drift_cal.ra.deg, drift_cal.dec.deg, c='red', s=20)
beam_ra = drift_cal.ra.deg + beams['dHA'] / np.cos((drift_cal.dec.deg + beams['dDec']) * u.deg)
beam_dec = drift_cal.dec.deg + beams['dDec']
for j in range(len(beams)):
plt.text(beam_ra[j], beam_dec[j], str(j), fontsize=18)
ax.add_patch(plt.Circle((beam_ra[j], beam_dec[j]), 0.3, edgecolor='grey', facecolor='none', alpha=0.5, linewidth=2.5))
#ax.scatter(beam_ra, beam_dec, s=6500, marker='o', color="none", edgecolors='grey', alpha=0.5)
ax.scatter(ra_start, dec_row, s=20, marker='<', facecolor='grey')
for i in range(len(dec_cen)):
# ax.plot([ra_start[i], ra_start[i] + (ha_end[i] - ha_start[i] + 1.2) / np.cos((dec_row[i]) * u.deg)],
ax.plot([ra_start[i], ra_start[i] + drift_time[i] / u.min / 60. /12. * 180.],
[dec_row[i], dec_row[i]], color='C0', alpha=0.5)
xlims = ax.get_xlim()
plt.xlim(xlims[1]+0.25,xlims[0]-0.25)
ax.set_xlabel("RA [deg]", fontsize=20)
ax.set_ylabel("DEC [deg]", fontsize=20)
ax.tick_params(axis='both', which='major', labelsize=15)
figfilename = calib_name.replace(' ', '') + '_driftscan.png'
plt.savefig(figfilename, dpi=200, bbox_inches='tight')
# Open & prepare CSV file to write parset parameters to, in format given by V.M. Moss.
# Don't worry about slew time because 2 minute wait will always be longer.
with open(calib_name.replace(' ','') + "_drift" + args.starttime_utc.strftime("%Y%m%d") + args.output + ".csv", "w") as csvfile:
csvfile.write('source,ra,ha,dec,date1,time1,date2,time2,int,type,weight,beam,switch_type,freqmode,centfreq,template\n')
for i in range(len(dec_cen)):
sidereal_t = Time(start_obstime_utc).sidereal_time('apparent', westerbork().lon)
wrap = 0 * u.hourangle
if (sidereal_t - drift_cal.ra).value > 12.0 :
wrap = 24 * u.hourangle
if (sidereal_t - drift_cal.ra).value < -12.0 :
wrap = -24 * u.hourangle
telescope_position_hadec = sidereal_t - start_pos[i].ra - wrap
end_obstime_utc = do_drift(start_obstime_utc, drift_time[i].value)
date1, time1 = start_obstime_utc.strftime('%Y-%m-%d'), start_obstime_utc.strftime('%H:%M:%S')
date2, time2 = end_obstime_utc.strftime('%Y-%m-%d'), end_obstime_utc.strftime('%H:%M:%S')
offset = (drift_cal.dec.deg - dec_cen[i]) * 60. # units in arcmins
sign = '+' if int(offset) >= 0 else '-'
csvfile.write('{}drift{}{:02},,{:.6f},{:.6f},{},{},{},{},10,T,compound,0,system,300,1370,{}\n'.format(calib_name.replace(' ',''),
sign, int(np.abs(offset)),telescope_position_hadec.deg, dec_cen[i], date1, time1, date2, time2,
'/opt/apertif/share/parsets/parset_start_observation_atdb_SubbandPhaseCorrection.template'))
start_obstime_utc = end_obstime_utc + datetime.timedelta(minutes=2.0)
print(end_obstime_utc)
# Don't add the last 2 minutes to write out the end time because we don't care about the delay for the data writer.
print("Assuming {} drifts, ending observations! UTC: {}".format(args.drifts_per_beam,end_obstime_utc))
print("CSV file written to {}".format(csvfile.name))
print("PNG file written to {}".format(figfilename))
print("##################################################################\n")
if __name__ == '__main__':
# import timeit
# print(timeit.timeit("main()", setup="from __main__ import main"))
main()