-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathitem_rater.py
189 lines (162 loc) · 6.09 KB
/
item_rater.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import argparse
import math
import dateparser
import tabulate
import couchdb
import matchlib
import opendota
def calculate_item_winrates(item_info, db_query):
heroes = {}
for match in db_query:
if not matchlib.is_fully_parsed(match):
continue
filtered_item_purchases = matchlib.parse_match(match)
for hero_purchases in filtered_item_purchases:
hero_name = hero_purchases["hero"]["localized_name"]
counted_already = set()
heroes.setdefault(hero_name, {})
heroes[hero_name].setdefault("wins", 0)
heroes[hero_name].setdefault("games", 0)
heroes[hero_name].setdefault("items", {})
heroes[hero_name]["games"] += 1
if hero_purchases["player_won"]:
heroes[hero_name]["wins"] += 1
for purchase in hero_purchases["purchases"]:
if purchase["key"] in counted_already:
# TODO: Handle consumables, probably via buckets, ie. 1 sentry, 2-4 sentries, 4-8, etc
continue
counted_already.add(purchase["key"])
heroes[hero_name]["items"].setdefault(
purchase["key"], {"wins": 0, "games": 0}
)
heroes[hero_name]["items"][purchase["key"]]["games"] += 1
heroes[hero_name]["items"][purchase["key"]]["wins"] += int(
hero_purchases["player_won"]
)
components = item_info[purchase["key"]]["components"]
if not components:
continue
for component in components:
if not component in heroes[hero_name]["items"]:
continue
heroes[hero_name]["items"][component]["games"] -= 1
heroes[hero_name]["items"][component]["wins"] -= int(
hero_purchases["player_won"]
)
return heroes
def normalize_item_winrates_by_cost_and_hero_winrate(
hero_table, item_info, min_num_games=30
):
hero_winrate = hero_table.get("wins", 0) / hero_table.get("games", 1)
marginal_winrate = []
marginal_cost_winrate = []
for key, game_info in hero_table["items"].items():
if game_info.get("games", 0) < min_num_games:
continue
if item_info[key]["cost"] == 0:
continue
winrate = (game_info.get("wins", 0) / game_info.get("games", 1)) - hero_winrate
actual_winrate = game_info.get("wins", 0) / game_info.get("games", 1)
standard_deviation = math.sqrt(
actual_winrate * (1 - actual_winrate) / game_info.get("games", 1)
)
marginal_winrate.append(
(
winrate,
game_info.get("games"),
item_info[key].get('dname', item_info[key].get('img')),
standard_deviation,
)
)
cost_winrate = winrate / math.log(item_info[key]["cost"])
marginal_cost_winrate.append(
(
cost_winrate,
game_info.get("games"),
item_info[key].get('dname', item_info[key].get('img')),
)
)
marginal_winrate.sort(reverse=True)
marginal_cost_winrate.sort(reverse=True)
return hero_table["games"], hero_winrate, marginal_winrate, marginal_cost_winrate
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--hero", type=str, default="")
parser.add_argument("--start-time", type=str, default='Jan 1 2020')
parser.add_argument("--all-heroes", action="store_true")
parser.add_argument("--min-num-games", type=int, default=30)
parser.add_argument("--num-hero-item-pairs", type=int, default=100)
args = parser.parse_args()
db = couchdb.get_matches_db()
start_time = dateparser.parse(args.start_time).timestamp()
dbquery = couchdb.get_all_matches_with_hero_after_start_time(
db,
start_time,
[args.hero],
)
item_info = opendota.get_item_table()
item_winrates = calculate_item_winrates(
item_info,
dbquery,
)
hero_winrates = [
(hero_name, iw["wins"], iw["games"], (iw["wins"] / iw["games"]) * 100)
for (hero_name, iw) in item_winrates.items()
]
hero_winrates = sorted(hero_winrates, key=lambda x: x[3], reverse=True)
print(
tabulate.tabulate(hero_winrates, headers=["Name", "Wins", "Games", "Winrate"])
)
print("\n")
if args.hero:
games, winrate, a, b = normalize_item_winrates_by_cost_and_hero_winrate(
item_winrates[args.hero],
item_info,
args.min_num_games,
)
print(f"Hero: {args.hero}")
print(f"Overall Winrate: {winrate * 100} over {games} games")
print("\n")
print(
tabulate.tabulate(
a,
headers=[
"Marginal Winrate",
"Total Games",
"Item",
"Standard deviation",
],
)
)
print("\n")
print(
tabulate.tabulate(
b, headers=[
"Marginal Cost Winrate",
"Total Games",
"Item",
]
)
)
if args.all_heroes:
a_list = []
for hero_name in item_winrates:
games, winrate, a, b = normalize_item_winrates_by_cost_and_hero_winrate(
item_winrates[hero_name], item_info, args.min_num_games
)
a_with_hero_name = [(winrate, *item, hero_name) for item in a]
a_list.extend(a_with_hero_name)
a_list.sort(key=lambda x: x[1], reverse=True)
print(
tabulate.tabulate(
a_list[: args.num_hero_item_pairs],
headers=[
"Hero Winrate",
"Marginal Winrate",
"Total Games",
"Item",
"MW Standard Deviation",
"Hero",
],
)
)