forked from apple/darwin-xnu
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpe_identify_machine.c
648 lines (555 loc) · 22.2 KB
/
pe_identify_machine.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
/*
* Copyright (c) 2007-2019 Apple Inc. All rights reserved.
* Copyright (c) 2000-2006 Apple Computer, Inc. All rights reserved.
*/
#include <pexpert/pexpert.h>
#include <pexpert/boot.h>
#include <pexpert/protos.h>
#include <pexpert/device_tree.h>
#if defined(__arm__)
#include <pexpert/arm/board_config.h>
#elif defined(__arm64__)
#include <pexpert/arm64/board_config.h>
#endif
#include <kern/clock.h>
#include <machine/machine_routines.h>
#if DEVELOPMENT || DEBUG
#include <kern/simple_lock.h>
#include <kern/cpu_number.h>
#endif
/* Local declarations */
void pe_identify_machine(boot_args * bootArgs);
/* External declarations */
extern void clean_mmu_dcache(void);
static char *gPESoCDeviceType;
static char gPESoCDeviceTypeBuffer[SOC_DEVICE_TYPE_BUFFER_SIZE];
static vm_offset_t gPESoCBasePhys;
static uint32_t gTCFG0Value;
static uint32_t pe_arm_init_timer(void *args);
#if DEVELOPMENT || DEBUG
decl_simple_lock_data(, panic_hook_lock);
#endif
/*
* pe_identify_machine:
*
* Sets up platform parameters. Returns: nothing
*/
void
pe_identify_machine(boot_args * bootArgs)
{
OpaqueDTEntryIterator iter;
DTEntry cpus, cpu;
uint32_t mclk = 0, hclk = 0, pclk = 0, tclk = 0, use_dt = 0;
unsigned long const *value;
unsigned int size;
int err;
(void)bootArgs;
if (pe_arm_get_soc_base_phys() == 0) {
return;
}
/* Clear the gPEClockFrequencyInfo struct */
bzero((void *)&gPEClockFrequencyInfo, sizeof(clock_frequency_info_t));
if (!strcmp(gPESoCDeviceType, "s3c2410-io")) {
mclk = 192 << 23;
hclk = mclk / 2;
pclk = hclk / 2;
tclk = (1 << (23 + 2)) / 10;
tclk = pclk / tclk;
gTCFG0Value = tclk - 1;
tclk = pclk / (4 * tclk); /* Calculate the "actual"
* Timer0 frequency in fixed
* point. */
mclk = (mclk >> 17) * (125 * 125);
hclk = (hclk >> 17) * (125 * 125);
pclk = (pclk >> 17) * (125 * 125);
tclk = (((((tclk * 125) + 2) >> 2) * 125) + (1 << 14)) >> 15;
} else if (!strcmp(gPESoCDeviceType, "integratorcp-io")) {
mclk = 200000000;
hclk = mclk / 2;
pclk = hclk / 2;
tclk = 100000;
} else if (!strcmp(gPESoCDeviceType, "olocreek-io")) {
mclk = 1000000000;
hclk = mclk / 8;
pclk = hclk / 2;
tclk = pclk;
} else if (!strcmp(gPESoCDeviceType, "omap3430sdp-io")) {
mclk = 332000000;
hclk = 19200000;
pclk = hclk;
tclk = pclk;
} else if (!strcmp(gPESoCDeviceType, "s5i3000-io")) {
mclk = 400000000;
hclk = mclk / 4;
pclk = hclk / 2;
tclk = 100000; /* timer is at 100khz */
} else {
use_dt = 1;
}
if (use_dt) {
/* Start with default values. */
gPEClockFrequencyInfo.timebase_frequency_hz = 24000000;
gPEClockFrequencyInfo.bus_clock_rate_hz = 100000000;
gPEClockFrequencyInfo.cpu_clock_rate_hz = 400000000;
err = SecureDTLookupEntry(NULL, "/cpus", &cpus);
assert(err == kSuccess);
err = SecureDTInitEntryIterator(cpus, &iter);
assert(err == kSuccess);
while (kSuccess == SecureDTIterateEntries(&iter, &cpu)) {
if ((kSuccess != SecureDTGetProperty(cpu, "state", (void const **)&value, &size)) ||
(strncmp((char const *)value, "running", size) != 0)) {
continue;
}
/* Find the time base frequency first. */
if (SecureDTGetProperty(cpu, "timebase-frequency", (void const **)&value, &size) == kSuccess) {
/*
* timebase_frequency_hz is only 32 bits, and
* the device tree should never provide 64
* bits so this if should never be taken.
*/
if (size == 8) {
gPEClockFrequencyInfo.timebase_frequency_hz = *(unsigned long long const *)value;
} else {
gPEClockFrequencyInfo.timebase_frequency_hz = *value;
}
}
gPEClockFrequencyInfo.dec_clock_rate_hz = gPEClockFrequencyInfo.timebase_frequency_hz;
/* Find the bus frequency next. */
if (SecureDTGetProperty(cpu, "bus-frequency", (void const **)&value, &size) == kSuccess) {
if (size == 8) {
gPEClockFrequencyInfo.bus_frequency_hz = *(unsigned long long const *)value;
} else {
gPEClockFrequencyInfo.bus_frequency_hz = *value;
}
}
gPEClockFrequencyInfo.bus_frequency_min_hz = gPEClockFrequencyInfo.bus_frequency_hz;
gPEClockFrequencyInfo.bus_frequency_max_hz = gPEClockFrequencyInfo.bus_frequency_hz;
if (gPEClockFrequencyInfo.bus_frequency_hz < 0x100000000ULL) {
gPEClockFrequencyInfo.bus_clock_rate_hz = gPEClockFrequencyInfo.bus_frequency_hz;
} else {
gPEClockFrequencyInfo.bus_clock_rate_hz = 0xFFFFFFFF;
}
/* Find the memory frequency next. */
if (SecureDTGetProperty(cpu, "memory-frequency", (void const **)&value, &size) == kSuccess) {
if (size == 8) {
gPEClockFrequencyInfo.mem_frequency_hz = *(unsigned long long const *)value;
} else {
gPEClockFrequencyInfo.mem_frequency_hz = *value;
}
}
gPEClockFrequencyInfo.mem_frequency_min_hz = gPEClockFrequencyInfo.mem_frequency_hz;
gPEClockFrequencyInfo.mem_frequency_max_hz = gPEClockFrequencyInfo.mem_frequency_hz;
/* Find the peripheral frequency next. */
if (SecureDTGetProperty(cpu, "peripheral-frequency", (void const **)&value, &size) == kSuccess) {
if (size == 8) {
gPEClockFrequencyInfo.prf_frequency_hz = *(unsigned long long const *)value;
} else {
gPEClockFrequencyInfo.prf_frequency_hz = *value;
}
}
gPEClockFrequencyInfo.prf_frequency_min_hz = gPEClockFrequencyInfo.prf_frequency_hz;
gPEClockFrequencyInfo.prf_frequency_max_hz = gPEClockFrequencyInfo.prf_frequency_hz;
/* Find the fixed frequency next. */
if (SecureDTGetProperty(cpu, "fixed-frequency", (void const **)&value, &size) == kSuccess) {
if (size == 8) {
gPEClockFrequencyInfo.fix_frequency_hz = *(unsigned long long const *)value;
} else {
gPEClockFrequencyInfo.fix_frequency_hz = *value;
}
}
/* Find the cpu frequency last. */
if (SecureDTGetProperty(cpu, "clock-frequency", (void const **)&value, &size) == kSuccess) {
if (size == 8) {
gPEClockFrequencyInfo.cpu_frequency_hz = *(unsigned long long const *)value;
} else {
gPEClockFrequencyInfo.cpu_frequency_hz = *value;
}
}
gPEClockFrequencyInfo.cpu_frequency_min_hz = gPEClockFrequencyInfo.cpu_frequency_hz;
gPEClockFrequencyInfo.cpu_frequency_max_hz = gPEClockFrequencyInfo.cpu_frequency_hz;
if (gPEClockFrequencyInfo.cpu_frequency_hz < 0x100000000ULL) {
gPEClockFrequencyInfo.cpu_clock_rate_hz = gPEClockFrequencyInfo.cpu_frequency_hz;
} else {
gPEClockFrequencyInfo.cpu_clock_rate_hz = 0xFFFFFFFF;
}
}
} else {
/* Use the canned values. */
gPEClockFrequencyInfo.timebase_frequency_hz = tclk;
gPEClockFrequencyInfo.fix_frequency_hz = tclk;
gPEClockFrequencyInfo.bus_frequency_hz = hclk;
gPEClockFrequencyInfo.cpu_frequency_hz = mclk;
gPEClockFrequencyInfo.prf_frequency_hz = pclk;
gPEClockFrequencyInfo.bus_frequency_min_hz = gPEClockFrequencyInfo.bus_frequency_hz;
gPEClockFrequencyInfo.bus_frequency_max_hz = gPEClockFrequencyInfo.bus_frequency_hz;
gPEClockFrequencyInfo.cpu_frequency_min_hz = gPEClockFrequencyInfo.cpu_frequency_hz;
gPEClockFrequencyInfo.cpu_frequency_max_hz = gPEClockFrequencyInfo.cpu_frequency_hz;
gPEClockFrequencyInfo.prf_frequency_min_hz = gPEClockFrequencyInfo.prf_frequency_hz;
gPEClockFrequencyInfo.prf_frequency_max_hz = gPEClockFrequencyInfo.prf_frequency_hz;
gPEClockFrequencyInfo.dec_clock_rate_hz = gPEClockFrequencyInfo.timebase_frequency_hz;
gPEClockFrequencyInfo.bus_clock_rate_hz = gPEClockFrequencyInfo.bus_frequency_hz;
gPEClockFrequencyInfo.cpu_clock_rate_hz = gPEClockFrequencyInfo.cpu_frequency_hz;
}
/* Set the num / den pairs form the hz values. */
gPEClockFrequencyInfo.bus_clock_rate_num = gPEClockFrequencyInfo.bus_clock_rate_hz;
gPEClockFrequencyInfo.bus_clock_rate_den = 1;
gPEClockFrequencyInfo.bus_to_cpu_rate_num =
(2 * gPEClockFrequencyInfo.cpu_clock_rate_hz) / gPEClockFrequencyInfo.bus_clock_rate_hz;
gPEClockFrequencyInfo.bus_to_cpu_rate_den = 2;
gPEClockFrequencyInfo.bus_to_dec_rate_num = 1;
gPEClockFrequencyInfo.bus_to_dec_rate_den =
gPEClockFrequencyInfo.bus_clock_rate_hz / gPEClockFrequencyInfo.dec_clock_rate_hz;
}
vm_offset_t
pe_arm_get_soc_base_phys(void)
{
DTEntry entryP;
uintptr_t const *ranges_prop;
uint32_t prop_size;
char const *tmpStr;
if (SecureDTFindEntry("name", "arm-io", &entryP) == kSuccess) {
if (gPESoCDeviceType == 0) {
SecureDTGetProperty(entryP, "device_type", (void const **)&tmpStr, &prop_size);
strlcpy(gPESoCDeviceTypeBuffer, tmpStr, SOC_DEVICE_TYPE_BUFFER_SIZE);
gPESoCDeviceType = gPESoCDeviceTypeBuffer;
SecureDTGetProperty(entryP, "ranges", (void const **)&ranges_prop, &prop_size);
gPESoCBasePhys = *(ranges_prop + 1);
}
return gPESoCBasePhys;
}
return 0;
}
extern void fleh_fiq_generic(void);
#if defined(ARM_BOARD_CLASS_T8002)
extern void fleh_fiq_t8002(void);
extern uint32_t t8002_get_decrementer(void);
extern void t8002_set_decrementer(uint32_t);
static struct tbd_ops t8002_funcs = {&fleh_fiq_t8002, &t8002_get_decrementer, &t8002_set_decrementer};
#endif /* defined(ARM_BOARD_CLASS_T8002) */
vm_offset_t gPicBase;
vm_offset_t gTimerBase;
vm_offset_t gSocPhys;
#if DEVELOPMENT || DEBUG
// This block contains the panic trace implementation
// These variables are local to this file, and contain the panic trace configuration information
typedef enum{
panic_trace_disabled = 0,
panic_trace_unused,
panic_trace_enabled,
panic_trace_alt_enabled,
} panic_trace_t;
static panic_trace_t bootarg_panic_trace;
static int bootarg_stop_clocks;
// The command buffer contains the converted commands from the device tree for commanding cpu_halt, enable_trace, etc.
#define DEBUG_COMMAND_BUFFER_SIZE 256
typedef struct command_buffer_element {
uintptr_t address;
uintptr_t value;
uint16_t destination_cpu_selector;
uint16_t delay_us;
bool is_32bit;
} command_buffer_element_t;
static command_buffer_element_t debug_command_buffer[DEBUG_COMMAND_BUFFER_SIZE]; // statically allocate to prevent needing alloc at runtime
static uint32_t next_command_buffer_entry = 0; // index of next unused slot in debug_command_buffer
#define CPU_SELECTOR_SHIFT (16)
#define CPU_SELECTOR_MASK (0xFFFF << CPU_SELECTOR_SHIFT)
#define REGISTER_OFFSET_MASK ((1 << CPU_SELECTOR_SHIFT) - 1)
#define REGISTER_OFFSET(register_prop) (register_prop & REGISTER_OFFSET_MASK)
#define CPU_SELECTOR(register_offset) ((register_offset & CPU_SELECTOR_MASK) >> CPU_SELECTOR_SHIFT) // Upper 16bits holds the cpu selector
#define MAX_WINDOW_SIZE 0xFFFF
#define PE_ISSPACE(c) (c == ' ' || c == '\t' || c == '\n' || c == '\12')
#define DELAY_SHIFT (32)
#define DELAY_MASK (0xFFFFULL << DELAY_SHIFT)
#define DELAY_US(register_offset) ((register_offset & DELAY_MASK) >> DELAY_SHIFT)
#define REGISTER_32BIT_MASK (1ULL << 63)
/*
* 0x0000 - all cpus
* 0x0001 - cpu 0
* 0x0002 - cpu 1
* 0x0004 - cpu 2
* 0x0003 - cpu 0 and 1
* since it's 16bits, we can have up to 16 cpus
*/
#define ALL_CPUS 0x0000
#define IS_CPU_SELECTED(cpu_number, cpu_selector) (cpu_selector == ALL_CPUS || (cpu_selector & (1<<cpu_number) ) != 0 )
#define RESET_VIRTUAL_ADDRESS_WINDOW 0xFFFFFFFF
// Pointers into debug_command_buffer for each operation. Assumes runtime will init them to zero.
static command_buffer_element_t *cpu_halt;
static command_buffer_element_t *enable_trace;
static command_buffer_element_t *enable_alt_trace;
static command_buffer_element_t *trace_halt;
static command_buffer_element_t *enable_stop_clocks;
static command_buffer_element_t *stop_clocks;
// Record which CPU is currently running one of our debug commands, so we can trap panic reentrancy to PE_arm_debug_panic_hook.
static int running_debug_command_on_cpu_number = -1;
static void
pe_init_debug_command(DTEntry entryP, command_buffer_element_t **command_buffer, const char* entry_name)
{
uintptr_t const *reg_prop;
uint32_t prop_size, reg_window_size = 0, command_starting_index;
uintptr_t debug_reg_window = 0;
if (command_buffer == 0) {
return;
}
if (SecureDTGetProperty(entryP, entry_name, (void const **)®_prop, &prop_size) != kSuccess) {
panic("pe_init_debug_command: failed to read property %s\n", entry_name);
}
// make sure command will fit
if (next_command_buffer_entry + prop_size / sizeof(uintptr_t) > DEBUG_COMMAND_BUFFER_SIZE - 1) {
panic("pe_init_debug_command: property %s is %u bytes, command buffer only has %lu bytes remaining\n",
entry_name, prop_size, ((DEBUG_COMMAND_BUFFER_SIZE - 1) - next_command_buffer_entry) * sizeof(uintptr_t));
}
// Hold the pointer in a temp variable and later assign it to command buffer, in case we panic while half-initialized
command_starting_index = next_command_buffer_entry;
// convert to real virt addresses and stuff commands into debug_command_buffer
for (; prop_size; reg_prop += 2, prop_size -= 2 * sizeof(uintptr_t)) {
if (*reg_prop == RESET_VIRTUAL_ADDRESS_WINDOW) {
debug_reg_window = 0; // Create a new window
} else if (debug_reg_window == 0) {
// create a window from virtual address to the specified physical address
reg_window_size = ((uint32_t)*(reg_prop + 1));
if (reg_window_size > MAX_WINDOW_SIZE) {
panic("pe_init_debug_command: Command page size is %0x, exceeds the Maximum allowed page size 0f 0%x\n", reg_window_size, MAX_WINDOW_SIZE );
}
debug_reg_window = ml_io_map(gSocPhys + *reg_prop, reg_window_size);
// for debug -- kprintf("pe_init_debug_command: %s registers @ 0x%08lX for 0x%08lX\n", entry_name, debug_reg_window, *(reg_prop + 1) );
} else {
if ((REGISTER_OFFSET(*reg_prop) + sizeof(uintptr_t)) >= reg_window_size) {
panic("pe_init_debug_command: Command Offset is %lx, exceeds allocated size of %x\n", REGISTER_OFFSET(*reg_prop), reg_window_size );
}
debug_command_buffer[next_command_buffer_entry].address = debug_reg_window + REGISTER_OFFSET(*reg_prop);
debug_command_buffer[next_command_buffer_entry].destination_cpu_selector = (uint16_t)CPU_SELECTOR(*reg_prop);
#if defined(__arm64__)
debug_command_buffer[next_command_buffer_entry].delay_us = DELAY_US(*reg_prop);
debug_command_buffer[next_command_buffer_entry].is_32bit = ((*reg_prop & REGISTER_32BIT_MASK) != 0);
#else
debug_command_buffer[next_command_buffer_entry].delay_us = 0;
debug_command_buffer[next_command_buffer_entry].is_32bit = false;
#endif
debug_command_buffer[next_command_buffer_entry++].value = *(reg_prop + 1);
}
}
// null terminate the address field of the command to end it
debug_command_buffer[next_command_buffer_entry++].address = 0;
// save pointer into table for this command
*command_buffer = &debug_command_buffer[command_starting_index];
}
static void
pe_run_debug_command(command_buffer_element_t *command_buffer)
{
// When both the CPUs panic, one will get stuck on the lock and the other CPU will be halted when the first executes the debug command
simple_lock(&panic_hook_lock, LCK_GRP_NULL);
running_debug_command_on_cpu_number = cpu_number();
while (command_buffer && command_buffer->address) {
if (IS_CPU_SELECTED(running_debug_command_on_cpu_number, command_buffer->destination_cpu_selector)) {
if (command_buffer->is_32bit) {
*((volatile uint32_t*)(command_buffer->address)) = (uint32_t)(command_buffer->value);
} else {
*((volatile uintptr_t*)(command_buffer->address)) = command_buffer->value; // register = value;
}
if (command_buffer->delay_us != 0) {
uint64_t deadline;
nanoseconds_to_absolutetime(command_buffer->delay_us * NSEC_PER_USEC, &deadline);
deadline += ml_get_timebase();
while (ml_get_timebase() < deadline) {
os_compiler_barrier();
}
}
}
command_buffer++;
}
running_debug_command_on_cpu_number = -1;
simple_unlock(&panic_hook_lock);
}
void
PE_arm_debug_enable_trace(void)
{
switch (bootarg_panic_trace) {
case panic_trace_enabled:
pe_run_debug_command(enable_trace);
break;
case panic_trace_alt_enabled:
pe_run_debug_command(enable_alt_trace);
break;
default:
break;
}
}
static void
PE_arm_panic_hook(const char *str __unused)
{
(void)str; // not used
if (bootarg_stop_clocks != 0) {
pe_run_debug_command(stop_clocks);
}
// if panic trace is enabled
if (bootarg_panic_trace != 0) {
if (running_debug_command_on_cpu_number == cpu_number()) {
// This is going to end badly if we don't trap, since we'd be panic-ing during our own code
kprintf("## Panic Trace code caused the panic ##\n");
return; // allow the normal panic operation to occur.
}
// Stop tracing to freeze the buffer and return to normal panic processing.
pe_run_debug_command(trace_halt);
}
}
void (*PE_arm_debug_panic_hook)(const char *str) = PE_arm_panic_hook;
void
PE_init_cpu(void)
{
if (bootarg_stop_clocks != 0) {
pe_run_debug_command(enable_stop_clocks);
}
pe_init_fiq();
}
#else
void(*const PE_arm_debug_panic_hook)(const char *str) = NULL;
void
PE_init_cpu(void)
{
pe_init_fiq();
}
#endif // DEVELOPMENT || DEBUG
void
PE_panic_hook(const char *str __unused)
{
if (PE_arm_debug_panic_hook != NULL) {
PE_arm_debug_panic_hook(str);
}
}
void
pe_arm_init_debug(void *args)
{
DTEntry entryP;
uintptr_t const *reg_prop;
uint32_t prop_size;
if (gSocPhys == 0) {
kprintf("pe_arm_init_debug: failed to initialize gSocPhys == 0\n");
return;
}
if (SecureDTFindEntry("device_type", "cpu-debug-interface", &entryP) == kSuccess) {
if (args != NULL) {
if (SecureDTGetProperty(entryP, "reg", (void const **)®_prop, &prop_size) == kSuccess) {
ml_init_arm_debug_interface(args, ml_io_map(gSocPhys + *reg_prop, *(reg_prop + 1)));
}
#if DEVELOPMENT || DEBUG
// When args != NULL, this means we're being called from arm_init on the boot CPU.
// This controls one-time initialization of the Panic Trace infrastructure
simple_lock_init(&panic_hook_lock, 0); //assuming single threaded mode
// Panic_halt is deprecated. Please use panic_trace istead.
unsigned int temp_bootarg_panic_trace;
if (PE_parse_boot_argn("panic_trace", &temp_bootarg_panic_trace, sizeof(temp_bootarg_panic_trace)) ||
PE_parse_boot_argn("panic_halt", &temp_bootarg_panic_trace, sizeof(temp_bootarg_panic_trace))) {
kprintf("pe_arm_init_debug: panic_trace=%d\n", temp_bootarg_panic_trace);
// Prepare debug command buffers.
pe_init_debug_command(entryP, &cpu_halt, "cpu_halt");
pe_init_debug_command(entryP, &enable_trace, "enable_trace");
pe_init_debug_command(entryP, &enable_alt_trace, "enable_alt_trace");
pe_init_debug_command(entryP, &trace_halt, "trace_halt");
// now that init's are done, enable the panic halt capture (allows pe_init_debug_command to panic normally if necessary)
bootarg_panic_trace = temp_bootarg_panic_trace;
// start tracing now if enabled
PE_arm_debug_enable_trace();
}
unsigned int temp_bootarg_stop_clocks;
if (PE_parse_boot_argn("stop_clocks", &temp_bootarg_stop_clocks, sizeof(temp_bootarg_stop_clocks))) {
pe_init_debug_command(entryP, &enable_stop_clocks, "enable_stop_clocks");
pe_init_debug_command(entryP, &stop_clocks, "stop_clocks");
bootarg_stop_clocks = temp_bootarg_stop_clocks;
}
#endif
}
} else {
kprintf("pe_arm_init_debug: failed to find cpu-debug-interface\n");
}
}
static uint32_t
pe_arm_map_interrupt_controller(void)
{
DTEntry entryP;
uintptr_t const *reg_prop;
uint32_t prop_size;
vm_offset_t soc_phys = 0;
gSocPhys = pe_arm_get_soc_base_phys();
soc_phys = gSocPhys;
kprintf("pe_arm_map_interrupt_controller: soc_phys: 0x%lx\n", (unsigned long)soc_phys);
if (soc_phys == 0) {
return 0;
}
if (SecureDTFindEntry("interrupt-controller", "master", &entryP) == kSuccess) {
kprintf("pe_arm_map_interrupt_controller: found interrupt-controller\n");
SecureDTGetProperty(entryP, "reg", (void const **)®_prop, &prop_size);
gPicBase = ml_io_map(soc_phys + *reg_prop, *(reg_prop + 1));
kprintf("pe_arm_map_interrupt_controller: gPicBase: 0x%lx\n", (unsigned long)gPicBase);
}
if (gPicBase == 0) {
kprintf("pe_arm_map_interrupt_controller: failed to find the interrupt-controller.\n");
return 0;
}
if (SecureDTFindEntry("device_type", "timer", &entryP) == kSuccess) {
kprintf("pe_arm_map_interrupt_controller: found timer\n");
SecureDTGetProperty(entryP, "reg", (void const **)®_prop, &prop_size);
gTimerBase = ml_io_map(soc_phys + *reg_prop, *(reg_prop + 1));
kprintf("pe_arm_map_interrupt_controller: gTimerBase: 0x%lx\n", (unsigned long)gTimerBase);
}
if (gTimerBase == 0) {
kprintf("pe_arm_map_interrupt_controller: failed to find the timer.\n");
return 0;
}
return 1;
}
uint32_t
pe_arm_init_interrupts(void *args)
{
kprintf("pe_arm_init_interrupts: args: %p\n", args);
/* Set up mappings for interrupt controller and possibly timers (if they haven't been set up already) */
if (args != NULL) {
if (!pe_arm_map_interrupt_controller()) {
return 0;
}
}
return pe_arm_init_timer(args);
}
static uint32_t
pe_arm_init_timer(void *args)
{
vm_offset_t pic_base = 0;
vm_offset_t timer_base = 0;
vm_offset_t soc_phys;
vm_offset_t eoi_addr = 0;
uint32_t eoi_value = 0;
struct tbd_ops generic_funcs = {&fleh_fiq_generic, NULL, NULL};
struct tbd_ops empty_funcs __unused = {NULL, NULL, NULL};
tbd_ops_t tbd_funcs = &generic_funcs;
/* The SoC headers expect to use pic_base, timer_base, etc... */
pic_base = gPicBase;
timer_base = gTimerBase;
soc_phys = gSocPhys;
#if defined(ARM_BOARD_CLASS_T8002)
if (!strcmp(gPESoCDeviceType, "t8002-io") ||
!strcmp(gPESoCDeviceType, "t8004-io")) {
/* Enable the Decrementer */
aic_write32(kAICTmrCnt, 0x7FFFFFFF);
aic_write32(kAICTmrCfg, kAICTmrCfgEn);
aic_write32(kAICTmrIntStat, kAICTmrIntStatPct);
#ifdef ARM_BOARD_WFE_TIMEOUT_NS
// Enable the WFE Timer
rPMGR_EVENT_TMR_PERIOD = ((uint64_t)(ARM_BOARD_WFE_TIMEOUT_NS) *gPEClockFrequencyInfo.timebase_frequency_hz) / NSEC_PER_SEC;
rPMGR_EVENT_TMR = rPMGR_EVENT_TMR_PERIOD;
rPMGR_EVENT_TMR_CTL = PMGR_EVENT_TMR_CTL_EN;
#endif /* ARM_BOARD_WFE_TIMEOUT_NS */
eoi_addr = pic_base;
eoi_value = kAICTmrIntStatPct;
tbd_funcs = &t8002_funcs;
} else
#endif
#if defined(__arm64__)
tbd_funcs = &empty_funcs;
#else
return 0;
#endif
if (args != NULL) {
ml_init_timebase(args, tbd_funcs, eoi_addr, eoi_value);
}
return 1;
}