-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathELW.glsl
109 lines (90 loc) · 2.8 KB
/
ELW.glsl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
#ifdef GL_ES
precision mediump float;
#endif
#define PI 3.14159265358979323846
uniform float time;
uniform vec2 resolution;
vec3 random3(vec3 c) {
float j = 4096.0*sin(dot(c,vec3(17.0, 59.4, 15.0)));
vec3 r;
r.z = fract(512.0*j);
j *= .125;
r.x = fract(512.0*j);
j *= .125;
r.y = fract(512.0*j);
return r-0.5;
}
/* skew constants for 3d simplex functions */
const float F3 = 0.3333333;
const float G3 = 0.1666667;
/* 3d simplex noise */
float simplex3d(vec3 p) {
/* 1. find current tetrahedron T and it's four vertices */
/* s, s+i1, s+i2, s+1.0 - absolute skewed (integer) coordinates of T vertices */
/* x, x1, x2, x3 - unskewed coordinates of p relative to each of T vertices*/
/* calculate s and x */
vec3 s = floor(p + dot(p, vec3(F3)));
vec3 x = p - s + dot(s, vec3(G3));
/* calculate i1 and i2 */
vec3 e = step(vec3(0.0), x - x.yzx);
vec3 i1 = e*(1.0 - e.zxy);
vec3 i2 = 1.0 - e.zxy*(1.0 - e);
/* x1, x2, x3 */
vec3 x1 = x - i1 + G3;
vec3 x2 = x - i2 + 2.0*G3;
vec3 x3 = x - 1.0 + 3.0*G3;
/* 2. find four surflets and store them in d */
vec4 w, d;
/* calculate surflet weights */
w.x = dot(x, x);
w.y = dot(x1, x1);
w.z = dot(x2, x2);
w.w = dot(x3, x3);
/* w fades from 0.6 at the center of the surflet to 0.0 at the margin */
w = max(0.6 - w, 0.0);
/* calculate surflet components */
d.x = dot(random3(s), x);
d.y = dot(random3(s + i1), x1);
d.z = dot(random3(s + i2), x2);
d.w = dot(random3(s + 1.0), x3);
/* multiply d by w^4 */
w *= w;
w *= w;
d *= w;
/* 3. return the sum of the four surflets */
return dot(d, vec4(52.0));
}
/* const matrices for 3d rotation */
const mat3 rot1 = mat3(-0.37, 0.36, 0.85,-0.14,-0.93, 0.34,0.92, 0.01,0.4);
const mat3 rot2 = mat3(-0.55,-0.39, 0.74, 0.33,-0.91,-0.24,0.77, 0.12,0.63);
const mat3 rot3 = mat3(-0.71, 0.52,-0.47,-0.08,-0.72,-0.68,-0.7,-0.45,0.56);
/* directional artifacts can be reduced by rotating each octave */
float simplex3d_fractal(vec3 m) {
return 0.5333333*simplex3d( m * rot1)
+0.2666667*simplex3d(2.0 * m * rot2)
+0.1333333*simplex3d(4.0 * m * rot3)
+0.0666667*simplex3d(8.0 * m);
}
void main( void )
{
vec2 p = -1.0 + 2.0 * gl_FragCoord.xy / resolution.xy;
float r = sqrt(dot(p,p));
if (r >= 1.0)
{
discard;
}
// convert cartesian to polar coordinates
vec2 uv;
float f = (1.0-sqrt(1.0-r))/(r);
uv.x = p.x*f + time/30.;
uv.y = p.y*f;
uv *= 1.;
// determine surface type
float isLand = simplex3d_fractal(vec3(uv, 0.)) > 0.1 ? 1.0 : 0.0;
float isPoleCap = simplex3d_fractal(vec3(uv, 1.));
isPoleCap = isPoleCap - uv.y > 0.8 || isPoleCap + uv.y > 0.8 ? 1.0 : 0.0;
vec3 color = vec3(0., isLand*0.6, 0.4 - isLand);
color = isPoleCap > 0.5 ? vec3(isPoleCap) : color;
color = p.x*f < 0.5 ? color : color * .1;
gl_FragColor = vec4(color, 1.0);
}