-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist_regularized-irnn.py
executable file
·140 lines (114 loc) · 5.08 KB
/
mnist_regularized-irnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
'''This is a reproduction of the IRNN experiment
with pixel-by-pixel sequential MNIST in
"A Simple Way to Initialize Recurrent Networks of Rectified Linear Units"
by Quoc V. Le, Navdeep Jaitly, Geoffrey E. Hinton
arxiv:1504.00941v2 [cs.NE] 7 Apr 2015
http://arxiv.org/pdf/1504.00941v2.pdf
Optimizer is replaced with RMSprop which yields more stable and steady
improvement.
Reaches 0.93 train/test accuracy after 900 epochs
(which roughly corresponds to 1687500 steps in the original paper.)
'''
from __future__ import print_function
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Activation
from keras.layers import SimpleRNN
from keras import initializers
from keras.optimizers import RMSprop
import os
from keras import backend as K
import numpy as np
import tensorflow as tf
import logging
batch_size = 32
num_classes = 10
epochs = 200
hidden_units = 150
learning_rate = 1e-6
clip_norm = 1.0
l1_lambda = 1e-2
model_name = 'RIRNN-{}-Timesteps-{}'.format(l1_lambda, hidden_units)
if not os.path.exists(os.path.join('expr', model_name)):
os.system('mkdir {}'.format(os.path.join('expr', model_name)))
# the data, shuffled and split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.reshape(x_train.shape[0], -1, 1)
x_test = x_test.reshape(x_test.shape[0], -1, 1)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
def eigen_reg(weight_matrix):
# print('Weight Matrix: {}'.format(weight_matrix))
# print('Weights: {}'.format(weight_matrix))
eigenvalue, _ = K.tf.linalg.eigh(weight_matrix)
eigenvalue = K.variable(eigenvalue)
# print('Eigenvalue: {}'.format(eigenvalue))
return K.sum(K.cast_to_floatx(l1_lambda) * K.abs(K.ones_like(eigenvalue) - eigenvalue))
print('Evaluate Model {}...'.format(model_name))
model = Sequential()
model.add(SimpleRNN(hidden_units,
kernel_initializer=initializers.RandomNormal(stddev=0.001),
recurrent_initializer=initializers.Identity(gain=1.0),
recurrent_regularizer=eigen_reg,
activation='relu',
input_shape=x_train.shape[1:]))
model.add(Dense(num_classes))
model.add(Activation('softmax'))
rmsprop = RMSprop(lr=learning_rate)
model.compile(loss='categorical_crossentropy',
optimizer=rmsprop,
metrics=['accuracy'])
# for e in zip(model.layers[0].trainable_weights, model.layers[0].get_weights()):
# print('Param %s:\n%s' % (e[0],e[1]))
# print('Params: {} | {}'.format(model.layers[0].trainable_weights[1], model.layers[0].get_weights()[1]))
train_log = keras.callbacks.CSVLogger(os.path.join('expr', model_name, 'training.log'))
class ParamLogger(keras.callbacks.Callback):
def on_train_begin(self, logs={}):
logging.basicConfig(filename=os.path.join('expr', model_name, 'params_recorder.log'), level=logging.INFO)
def on_batch_end(self, batch, logs={}):
return
def on_train_end(self, logs={}):
recurrent_weights = model.layers[0].get_weights()[1]
eigenvalue, _ = np.linalg.eig(recurrent_weights)
np.savez(os.path.join('expr', model_name, "RecurrentKernel-final-epoch.npy"), kernel=recurrent_weights, eigenvalue=eigenvalue)
return
def on_epoch_begin(self, epoch, logs={}):
# print('Params: {} | {}'.format(model.layers[0].trainable_weights[1], model.layers[0].get_weights()[1]))
return
def on_epoch_end(self, epoch, logs={}):
logging.info('Epoch: {}'.format(epoch))
logging.info('Eigenvalue of {}'.format(model.layers[0].trainable_weights[1]))
recurrent_weights = model.layers[0].get_weights()[1]
eigenvalue, _ = np.linalg.eig(recurrent_weights)
logging.info('EigenValue | Max: {} | Min: {}'.format(np.max(eigenvalue), np.min(eigenvalue)))
logging.info('{}\n\n'.format(eigenvalue))
if epoch % 5 == 0:
np.savez(os.path.join('expr', model_name, "RecurrentKernel-epoch-{}.npy".format(epoch)), kernel=recurrent_weights, eigenvalue=eigenvalue)
return
def on_batch_begin(self, batch, logs={}):
return
def on_batch_end(self, batch, logs={}):
return
paramlogger = ParamLogger()
ckpt_saver = keras.callbacks.ModelCheckpoint(os.path.join('expr', model_name, 'weights.{epoch:02d}-{acc: .4f}.hdf5'),
monitor='acc',
verbose=1,
period=10)
model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test),
callbacks=[train_log, ckpt_saver, paramlogger])
scores = model.evaluate(x_test, y_test, verbose=0)
print('Model {} test score: {}'.format(model_name, scores[0]))
print('Model {} test accuracy: {}'.format(model_name, scores[1]))