-
Notifications
You must be signed in to change notification settings - Fork 118
/
Copy pathmasstree_split.hh
300 lines (272 loc) · 10.7 KB
/
masstree_split.hh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
/* Masstree
* Eddie Kohler, Yandong Mao, Robert Morris
* Copyright (c) 2012-2014 President and Fellows of Harvard College
* Copyright (c) 2012-2014 Massachusetts Institute of Technology
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, subject to the conditions
* listed in the Masstree LICENSE file. These conditions include: you must
* preserve this copyright notice, and you cannot mention the copyright
* holders in advertising related to the Software without their permission.
* The Software is provided WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED. This
* notice is a summary of the Masstree LICENSE file; the license in that file
* is legally binding.
*/
#ifndef MASSTREE_SPLIT_HH
#define MASSTREE_SPLIT_HH
#include "masstree_tcursor.hh"
#include "btree_leaflink.hh"
namespace Masstree {
/** @brief Return ikey at position @a i, assuming insert of @a ka at @a ka_i. */
template <typename P>
inline typename P::ikey_type
leaf<P>::ikey_after_insert(const permuter_type& perm, int i,
const tcursor<P>* cursor) const
{
if (i < cursor->kx_.i) {
return this->ikey0_[perm[i]];
} else if (i == cursor->kx_.i) {
return cursor->ka_.ikey();
} else {
return this->ikey0_[perm[i - 1]];
}
}
/** @brief Split this node into *@a nr and insert @a ka at position @a p.
@pre *@a nr is a new empty leaf
@pre this->locked() && @a nr->locked()
@post split_ikey is the first key in *@a nr
@return split type
If @a p == this->size() and *this is the rightmost node in the layer,
then this code assumes we're inserting nodes in sequential order, and
the split does not move any keys.
The split type is 0 if @a ka went into *this, 1 if the @a ka went into
*@a nr, and 2 for the sequential-order optimization (@a ka went into *@a
nr and no other keys were moved). */
template <typename P>
int leaf<P>::split_into(leaf<P>* nr, tcursor<P>* cursor,
ikey_type& split_ikey, threadinfo& ti)
{
masstree_precondition(!this->concurrent || (this->locked() && nr->locked()));
masstree_precondition(this->size() >= this->width - 1);
// B+tree leaf insertion.
// Split *this, with items [0,T::width), into *this + nr, simultaneously
// inserting "ka:value" at position "p" (0 <= p <= T::width).
// `mid` determines the split point. Post-split, `*this` contains [0,mid)
// and `nr` contains [mid,T::width+1).
// If `p < mid`, then the new item goes into `*this`, and the first element
// of `nr` will be former item (mid - 1).
// If `p >= mid`, then the new item goes into nr.
// pick initial insertion point
permuter_type perml(this->permutation_);
int width = perml.size(); // == this->width or this->width - 1
int mid = this->width / 2 + 1;
int p = cursor->kx_.i;
if (p == 0 && !this->prev_) {
// reverse-sequential optimization
mid = 1;
} else if (p == width && !this->next_.ptr) {
// sequential optimization
mid = width;
}
// adjust insertion point to keep keys with the same ikey0 together
ikey_type mid_ikey = ikey_after_insert(perml, mid, cursor);
if (mid_ikey == ikey_after_insert(perml, mid - 1, cursor)) {
int midl = mid - 2, midr = mid + 1;
while (true) {
if (midr <= width
&& mid_ikey != ikey_after_insert(perml, midr, cursor)) {
mid = midr;
break;
} else if (midl >= 0
&& mid_ikey != ikey_after_insert(perml, midl, cursor)) {
mid = midl + 1;
break;
}
--midl, ++midr;
}
masstree_invariant(mid > 0 && mid <= width);
}
// move items to `nr`
typename permuter_type::value_type pv = perml.value_from(mid - (p < mid));
for (int x = mid; x <= width; ++x) {
if (x == p) {
nr->assign_initialize(x - mid, cursor->ka_, ti);
} else {
nr->assign_initialize(x - mid, this, pv & 15, ti);
pv >>= 4;
}
}
permuter_type permr = permuter_type::make_sorted(width + 1 - mid);
if (p >= mid) {
permr.remove_to_back(p - mid);
}
nr->permutation_ = permr.value();
split_ikey = nr->ikey0_[0];
// link `nr` across leaves
btree_leaflink<leaf<P>, P::concurrent>::link_split(this, nr);
// return split type
return p < mid ? 0 : 1 + (mid == width);
}
template <typename P>
int internode<P>::split_into(internode<P>* nr, int p, ikey_type ka,
node_base<P>* value, ikey_type& split_ikey,
int split_type)
{
// B+tree internal node insertion.
// Split *this, with items [0,T::width), into *this + nr, simultaneously
// inserting "ka:value" at position "p" (0 <= p <= T::width).
// The midpoint element of the result is stored in "split_ikey".
// Let mid = ceil(T::width / 2). After the split, the key at
// post-insertion position mid is stored in split_ikey. *this contains keys
// [0,mid) and nr contains keys [mid+1,T::width+1).
// If p < mid, then x goes into *this, pre-insertion item mid-1 goes into
// split_ikey, and the first element of nr is pre-insertion item mid.
// If p == mid, then x goes into split_ikey and the first element of
// nr is pre-insertion item mid.
// If p > mid, then x goes into nr, pre-insertion item mid goes into
// split_ikey, and the first element of nr is post-insertion item mid+1.
masstree_precondition(!this->concurrent || (this->locked() && nr->locked()));
int mid = (split_type == 2 ? this->width : (this->width + 1) / 2);
nr->nkeys_ = this->width + 1 - (mid + 1);
if (p < mid) {
nr->child_[0] = this->child_[mid];
nr->shift_from(0, this, mid, this->width - mid);
split_ikey = this->ikey0_[mid - 1];
} else if (p == mid) {
nr->child_[0] = value;
nr->shift_from(0, this, mid, this->width - mid);
split_ikey = ka;
} else {
nr->child_[0] = this->child_[mid + 1];
nr->shift_from(0, this, mid + 1, p - (mid + 1));
nr->assign(p - (mid + 1), ka, value);
nr->shift_from(p + 1 - (mid + 1), this, p, this->width - p);
split_ikey = this->ikey0_[mid];
}
for (int i = 0; i <= nr->nkeys_; ++i) {
nr->child_[i]->set_parent(nr);
}
this->mark_split();
if (p < mid) {
this->nkeys_ = mid - 1;
return p;
} else {
this->nkeys_ = mid;
return -1;
}
}
template <typename P>
bool tcursor<P>::make_split(threadinfo& ti)
{
// We reach here if we might need to split, either because the node is
// full, or because we're trying to insert into position 0 (which holds
// the ikey_bound). But in the latter case, perhaps we can rearrange the
// permutation to do an insert instead.
if (n_->size() < n_->width) {
permuter_type perm(n_->permutation_);
perm.exchange(perm.size(), n_->width - 1);
kx_.p = perm.back();
if (kx_.p != 0) {
n_->permutation_ = perm.value();
fence();
n_->assign(kx_.p, ka_, ti);
return false;
}
}
node_type* child = leaf_type::make(n_->ksuf_used_capacity(), n_->phantom_epoch(), ti);
child->assign_version(*n_);
ikey_type xikey[2];
int split_type = n_->split_into(static_cast<leaf_type*>(child),
this, xikey[0], ti);
unsigned sense = 0;
node_type* n = n_;
uint32_t height = 0;
while (true) {
masstree_invariant(!n->concurrent || (n->locked() && child->locked() && (n->isleaf() || n->splitting())));
internode_type *next_child = 0;
internode_type *p = n->locked_parent(ti);
int kp = -1;
if (n->parent_exists(p)) {
kp = internode_type::bound_type::upper(xikey[sense], *p);
p->mark_insert();
}
if (kp < 0 || p->height_ > height + 1) {
internode_type *nn = internode_type::make(height + 1, ti);
nn->child_[0] = n;
nn->assign(0, xikey[sense], child);
nn->nkeys_ = 1;
if (kp < 0) {
nn->make_layer_root();
} else {
nn->set_parent(p);
p->child_[kp] = nn;
}
fence();
n->set_parent(nn);
} else {
if (p->size() >= p->width) {
next_child = internode_type::make(height + 1, ti);
next_child->assign_version(*p);
next_child->mark_nonroot();
kp = p->split_into(next_child, kp, xikey[sense],
child, xikey[sense ^ 1], split_type);
}
if (kp >= 0) {
p->shift_up(kp + 1, kp, p->size() - kp);
p->assign(kp, xikey[sense], child);
fence();
++p->nkeys_;
}
}
// complete split by stripping shifted items from left node
// (this is delayed until both nodes are reachable because
// creating new internodes is expensive; might as well leave items
// in the left leaf reachable until that's done)
if (n == n_) {
leaf_type* nl = static_cast<leaf_type*>(n);
leaf_type* nr = static_cast<leaf_type*>(child);
// shrink `nl` to only the relevant items
permuter_type perml(nl->permutation_);
int width = perml.size();
perml.set_size(width - nr->size());
// removed item, if any, must be @ perml.size()
if (width != nl->width) {
perml.exchange(perml.size(), nl->width - 1);
}
nl->mark_split();
nl->permutation_ = perml.value();
// account for split
if (split_type == 0) {
kx_.p = perml.back();
nl->assign(kx_.p, ka_, ti);
new_nodes_.emplace_back(nr, nr->full_unlocked_version_value());
} else {
kx_.i = kx_.p = kx_.i - perml.size();
n_ = nr;
updated_v_ = nl->full_unlocked_version_value();
}
}
// hand-over-hand locking
if (n != n_) {
n->unlock();
}
if (child != n_) {
child->unlock();
}
if (next_child) {
n = p;
child = next_child;
sense ^= 1;
++height;
} else if (p) {
p->unlock();
break;
} else {
break;
}
}
return false;
}
} // namespace Masstree
#endif