-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
180 lines (145 loc) · 7.12 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import argparse
from data_utils import *
from dataset import construct_datasets, zscore_normalize, minmax_normalize
from model import LieDetector
import torch
import torch.optim as optim
import torch.nn as nn
from torch.utils.data import SequentialSampler, DataLoader
import numpy as np
from typing import Union
import random
from collections import OrderedDict
name_to_opt = {
"adam": optim.Adam,
"sgd": optim.SGD
}
def parse_params(args: argparse.Namespace) -> Tuple[int, str, float, int]:
"""
Return the parameters given in necessary order.
"""
return (
args.batch_size,
args.optimizer,
args.lr,
args.epochs,
)
def run_one_iteration(model: LieDetector, inputs: Tensor, inputs_lengths: Tensor, labels: Tensor,
optimizer: optim.Optimizer, scheduler: optim.lr_scheduler.StepLR, args: argparse.Namespace,
criterion: nn.CrossEntropyLoss, mode: str="train") -> Tuple[Tensor, Tensor]:
"""
Run 1 iteration of the given batch through the model.
"""
inputs = inputs.float().to(args.device)
inputs_lengths = inputs_lengths.to(args.device)
labels = labels.to(args.device)
logits = model(inputs, inputs_lengths.to(args.device))
loss = criterion(logits, labels.to(args.device))
if mode == "train":
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), 0.3)
optimizer.step()
scheduler.step()
return logits, loss
def get_accuracy(logits: Tensor, labels: Tensor) -> float:
"""
Compute the accuracy of the batch given logits and labels.
"""
predictions = logits.softmax(dim=1).argmax(dim=1)
# print(torch.cat([predictions.unsqueeze(0), labels.unsqueeze(0)]).transpose(0, 1))
correct = torch.eq(predictions, labels).sum()
return correct.item() / labels.size(0)
def run_through_data(model: LieDetector, optimizer: optim.Optimizer, scheduler: optim.lr_scheduler.StepLR,
criterion: nn.CrossEntropyLoss, data_loader: DataLoader,
args: argparse.Namespace, mode: str="train") -> Union[None, Tuple[float, float]]:
"""
Run the model through the entire dataset. Mode must be one of train or validate
"""
assert mode in ["train", "validate"], "<mode> argument must be one of \"train\" or \"validate\"."
if mode == "train":
model.train()
else:
model.eval()
losses = []
accuracies = []
iteration = 1
for inputs, inputs_lengths, labels in data_loader:
inputs = minmax_normalize(inputs)
inputs = inputs.permute(1, 0, 2).contiguous()
logits, loss = run_one_iteration(
model, inputs, inputs_lengths, labels, optimizer, scheduler, args, criterion, mode)
accuracy = get_accuracy(logits, labels.to(args.device))
if mode == "validate":
accuracies.append(accuracy)
losses.append(loss.item())
else:
print(f"Iteration: {iteration}. Training Loss: {loss.item():.3f}. Training Accuracy: {accuracy:.3f}")
iteration += 1
if mode == "validate":
return sum(losses) / len(losses), sum(accuracies) / len(accuracies)
def train(model: LieDetector, args: argparse.Namespace, train_dataloader: DataLoader,
val_dataloader: DataLoader) -> None:
"""
The training loop for the model. The criterion used will be Cross Entropy loss.
"""
batch_size, opt_name, lr, epochs = parse_params(args)
optimizer = name_to_opt[opt_name](model.parameters(), lr=lr)
scheduler = optim.lr_scheduler.StepLR(optimizer, (len(train_dataloader) * args.epochs) // 4)
criterion = nn.CrossEntropyLoss(torch.Tensor([2, 1]).to(args.device))
for epoch in range(epochs):
print(f"Training epoch {epoch + 1}")
run_through_data(model, optimizer, scheduler, criterion, train_dataloader, args, "train")
loss, accuracy = run_through_data(model, optimizer, scheduler, criterion, val_dataloader, args, "validate")
print(f"End of epoch {epoch + 1}. Validation Loss: {loss:.3f}. Validation Accuracy: {accuracy:.3f}")
def main(args: argparse.Namespace) -> None:
"""
Run the training using the given arguments.
"""
model = LieDetector(args.input_size, args.hidden_size)
for name, _ in model.named_parameters():
if name.startswith("bias"):
bias = getattr(model, name)
n = bias.size(0)
start, end = n // 4, n // 2
bias.data[start:end].fill_(-1.)
if not args.no_cuda and torch.cuda.is_available():
args.device = torch.device("cuda")
else:
args.device = torch.device("cpu")
model = model.to(args.device)
inputs, labels = pool_data(args.source)
train_dataset, val_dataset, test_dataset = construct_datasets(
inputs, labels, args.train_split, args.val_split)
train_dataloader = DataLoader(
train_dataset, args.batch_size, sampler=SequentialSampler(train_dataset), collate_fn=pad_and_sort_batch)
val_dataloader = DataLoader(
val_dataset, args.batch_size, sampler=SequentialSampler(val_dataset), collate_fn=pad_and_sort_batch)
test_dataloader = DataLoader(
test_dataset, args.batch_size, sampler=SequentialSampler(test_dataset), collate_fn=pad_and_sort_batch)
train(model, args, train_dataloader, val_dataloader)
accuracies = torch.empty(len(test_dataloader))
for i, (inputs, inputs_lengths, labels) in enumerate(test_dataloader):
inputs = minmax_normalize(inputs)
inputs = inputs.permute(1, 0, 2).contiguous()
logits = model(inputs.float().to(args.device), inputs_lengths.to(args.device))
accuracies[i] = get_accuracy(logits, labels.to(args.device))
print(f"Model test accuracy: {accuracies.mean():.3f}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--source", required=True, help="Path to directory containing subdirectories of data", type=str)
parser.add_argument("--input_size", help="Dimensionality of data", type=int, default=13)
parser.add_argument("--hidden_size", help="Number of hidden neurons to use", type=int, default=16)
parser.add_argument("--batch_size", help="Batch size to use for training", type=int, default=32)
parser.add_argument("--optimizer", help="Name of optimizer to use for training, one of adam or sgd", type=str,
choices=["adam", "sgd"], default="sgd")
parser.add_argument("--lr", help="Learning rate to use for training", type=float, default=1e-4)
parser.add_argument("--epochs", help="The number of epochs to run training for", type=int, default=8),
parser.add_argument("--train_split", help="The percentage of the data used for training", type=float, default=0.7)
parser.add_argument("--val_split", help="The percentage of the data use for validation", type=float, default=0.2)
parser.add_argument("--no_cuda", help="Disable CUDA training", action="store_true")
parser.add_argument("--seed", help="Number for seeding random modules", type=int, default=42)
arguments = parser.parse_args()
random.seed(arguments.seed)
np.random.seed(arguments.seed)
torch.manual_seed(arguments.seed)
main(arguments)