-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathdataloaders.py
executable file
·372 lines (329 loc) · 15.7 KB
/
dataloaders.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
import numpy as np
#from sklearn.metrics import f1_score
import nibabel as nib
import os
#to make directories
import pathlib
from skimage import transform
class dataloaderObj:
#define functions to load data from acdc/prostate/mmwhs dataset
def __init__(self,cfg):
#print('dataloaders init')
self.data_path_tr=cfg.data_path_tr
self.data_path_tr_cropped=cfg.data_path_tr_cropped
self.target_resolution=cfg.target_resolution
self.dataset_name=cfg.dataset_name
self.size=cfg.size
self.num_classes=cfg.num_classes
self.one_label=0
def normalize_minmax_data(self, image_data,min_val=1,max_val=99):
"""
# 3D MRI scan is normalized to range between 0 and 1 using min-max normalization.
Here, the minimum and maximum values are used as 1st and 99th percentiles respectively from the 3D MRI scan.
We expect the outliers to be away from the range of [0,1].
input params :
image_data : 3D MRI scan to be normalized using min-max normalization
min_val : minimum value percentile
max_val : maximum value percentile
returns:
final_image_data : Normalized 3D MRI scan obtained via min-max normalization.
"""
min_val_1p=np.percentile(image_data,min_val)
max_val_99p=np.percentile(image_data,max_val)
final_image_data=np.zeros((image_data.shape[0],image_data.shape[1],image_data.shape[2]), dtype=np.float64)
# min-max norm on total 3D volume
final_image_data=(image_data-min_val_1p)/(max_val_99p-min_val_1p)
return final_image_data
def load_acdc_imgs(self, study_id_list,ret_affine=0,label_present=1):
"""
#Load ACDC image and its label with pixel dimensions
input params :
study_id_list: subject id number of the image to be loaded
ret_affine: to enable returning of affine transformation matrix of the loaded image
label_present : to enable loading of 3D mask if the label is present or not (0 is used for unlabeled images)
returns :
image_data_test_sys : normalized 3D image
label_data_test_sys : 3D label mask of the image
pixel_size : pixel dimensions of the loaded image
affine_tst : affine transformation matrix of the loaded image
"""
for study_id in study_id_list:
#print("study_id",study_id)
path_files=str(self.data_path_tr)+str(study_id)+'/'
#print(path_files)
systole_lstfiles = [] # create an empty list
for dirName, subdirList, fileList in os.walk(path_files):
fileList.sort()
#print(dirName,subdirList,fileList)
for filename in fileList:
#print(filename)
if "_frame01" in filename.lower():
systole_lstfiles.append(os.path.join(dirName,filename))
elif "_frame04" in filename.lower():
systole_lstfiles.append(os.path.join(dirName,filename))
# Load the 3D image
image_data_test_load = nib.load(systole_lstfiles[0])
image_data_test_sys=image_data_test_load.get_data()
pixel_size=image_data_test_load.header['pixdim'][1:4]
affine_tst=image_data_test_load.affine
# Normalize input data
image_data_test_sys=self.normalize_minmax_data(image_data_test_sys)
if(label_present==1):
# Load the segmentation mask
label_data_test_load = nib.load(systole_lstfiles[1])
label_data_test_sys=label_data_test_load.get_data()
if(label_present==0):
if(ret_affine==0):
return image_data_test_sys,pixel_size
else:
return image_data_test_sys,pixel_size,affine_tst
else:
if(ret_affine==0):
return image_data_test_sys,label_data_test_sys,pixel_size
else:
return image_data_test_sys,label_data_test_sys,pixel_size,affine_tst
def load_mmwhs_imgs(self, study_id_list,ret_affine=0,label_present=1):
"""
#Load MMWHS image and its label with pixel dimensions
input params :
study_id_list: subject id number of the image to be loaded
ret_affine: to enable returning of affine transformation matrix of the loaded image
label_present : to enable loading of 3D mask if the label is present or not (0 is used for unlabeled images)
returns :
image_data_test_sys : normalized 3D image
label_data_test_sys : 3D label mask of the image
pixel_size : pixel dimensions of the loaded image
affine_tst : affine transformation matrix of the loaded image
"""
for study_id in study_id_list:
img_path=str(self.data_path_tr)+str(study_id)+'/img.nii.gz'
seg_path=str(self.data_path_tr)+str(study_id)+'/seg.nii.gz'
# Load the 3D image
image_data_test_load = nib.load(img_path)
image_data_test_sys=image_data_test_load.get_data()
pixel_size=image_data_test_load.header['pixdim'][1:4]
affine_tst=image_data_test_load.affine
# Normalize input data
image_data_test_sys=self.normalize_minmax_data(image_data_test_sys)
if(label_present==1):
# Load the segmentation mask
label_data_test_load = nib.load(seg_path)
label_data_test_sys=label_data_test_load.get_data()
if(label_present==0):
if(ret_affine==0):
return image_data_test_sys,pixel_size
else:
return image_data_test_sys,pixel_size,affine_tst
else:
if(ret_affine==0):
return image_data_test_sys,label_data_test_sys,pixel_size
else:
return image_data_test_sys,label_data_test_sys,pixel_size,affine_tst
def load_prostate_imgs_md(self, study_id_list,ret_affine=0,label_present=1):
"""
#Load Prostate MD image and its label with pixel dimensions
input params :
study_id_list: subject id number of the image to be loaded
ret_affine: to enable returning of affine transformation matrix of the loaded image
label_present : to enable loading of 3D mask if the label is present or not (0 is used for unlabeled images)
returns :
image_data_test_sys : normalized 3D image
label_data_test_sys : 3D label mask of the image
pixel_size : pixel dimensions of the loaded image
affine_tst : affine transformation matrix of the loaded image
"""
#Load Prostate data images and its labels with pixel dimensions
print('PZ Decathlon')
for study_id in study_id_list:
img_path=str(self.data_path_tr)+str(study_id)+'/img.nii.gz'
seg_path=str(self.data_path_tr)+str(study_id)+'/mask.nii.gz'
# Load the 3D image
image_data_test_load = nib.load(img_path)
image_data_test_sys=image_data_test_load.get_data()
pixel_size=image_data_test_load.header['pixdim'][1:4]
affine_tst=image_data_test_load.affine
image_data_test_sys=image_data_test_sys[:,:,:,0]
# Normalize input data
image_data_test_sys=self.normalize_minmax_data(image_data_test_sys)
if(label_present==1):
# Load the segmentation mask
label_data_test_load = nib.load(seg_path)
label_data_test_sys=label_data_test_load.get_data()
if(label_present==0):
if(ret_affine==0):
return image_data_test_sys,pixel_size
else:
return image_data_test_sys,pixel_size,affine_tst
else:
if(ret_affine==0):
return image_data_test_sys,label_data_test_sys,pixel_size
else:
return image_data_test_sys,label_data_test_sys,pixel_size,affine_tst
def crop_or_pad_slice_to_size_1hot(self, img_slice, nx, ny):
"""
To crop the input 2D slice for the chosen dimensions in 1-hot encoding format
input params :
image_slice : 2D slice to be cropped (in 1-hot encoding format)
nx : dimension in x
ny : dimension in y
returns:
slice_cropped : cropped 2D slice
"""
slice_cropped=np.zeros((nx,ny,self.num_classes))
x, y, _ = img_slice.shape
x_s = (x - nx) // 2
y_s = (y - ny) // 2
x_c = (nx - x) // 2
y_c = (ny - y) // 2
if x > nx and y > ny:
slice_cropped = img_slice[x_s:x_s + nx, y_s:y_s + ny]
else:
slice_cropped = np.zeros((nx, ny,self.num_classes))
if x <= nx and y > ny:
slice_cropped[x_c:x_c + x, :] = img_slice[:, y_s:y_s + ny]
elif x > nx and y <= ny:
slice_cropped[:, y_c:y_c + y] = img_slice[x_s:x_s + nx, :]
else:
slice_cropped[x_c:x_c + x, y_c:y_c + y] = img_slice[:, :]
return slice_cropped
def crop_or_pad_slice_to_size(self, img_slice, nx, ny):
"""
To crop the input 2D slice for the chosen dimensions
input params :
image_slice : 2D slice to be cropped
nx : dimension in x
ny : dimension in y
returns:
slice_cropped : cropped 2D slice
"""
slice_cropped=np.zeros((nx,ny))
x, y = img_slice.shape
x_s = (x - nx) // 2
y_s = (y - ny) // 2
x_c = (nx - x) // 2
y_c = (ny - y) // 2
if x > nx and y > ny:
slice_cropped = img_slice[x_s:x_s + nx, y_s:y_s + ny]
else:
slice_cropped = np.zeros((nx, ny))
if x <= nx and y > ny:
slice_cropped[x_c:x_c + x, :] = img_slice[:, y_s:y_s + ny]
elif x > nx and y <= ny:
slice_cropped[:, y_c:y_c + y] = img_slice[x_s:x_s + nx, :]
else:
slice_cropped[x_c:x_c + x, y_c:y_c + y] = img_slice[:, :]
return slice_cropped
def preprocess_data(self, img, mask, pixel_size,label_present=1):
"""
To preprocess the input 3D volume into chosen target resolution and crop them into dimensions specified in the init_*dataset_name*.py file
input params :
img : input 3D image volume to be processed
mask : corresponding 3D segmentation mask to be processed
pixel_size : the native pixel size of the input image
label_present : to indicate if the image has labels provided or not (used for unlabeled images)
returns:
cropped_img : processed and cropped 3D image
cropped_mask : processed and cropped 3D segmentation mask
"""
nx,ny=self.size
#scale vector to rescale to the target resolution
scale_vector = [pixel_size[0] / self.target_resolution[0], pixel_size[1] / self.target_resolution[1]]
for slice_no in range(img.shape[2]):
slice_img = np.squeeze(img[:, :, slice_no])
slice_rescaled = transform.rescale(slice_img,
scale_vector,
order=1,
preserve_range=True,
mode = 'constant')
if(label_present==1):
slice_mask = np.squeeze(mask[:, :, slice_no])
mask_rescaled = transform.rescale(slice_mask,
scale_vector,
order=0,
preserve_range=True,
mode='constant')
slice_cropped = self.crop_or_pad_slice_to_size(slice_rescaled, nx, ny)
if(label_present==1):
mask_cropped = self.crop_or_pad_slice_to_size(mask_rescaled, nx, ny)
if(slice_no==0):
cropped_img=np.reshape(slice_cropped,(nx,ny,1))
if(label_present==1):
cropped_mask=np.reshape(mask_cropped,(nx,ny,1))
else:
slice_cropped_tmp=np.reshape(slice_cropped,(nx,ny,1))
cropped_img=np.concatenate((cropped_img,slice_cropped_tmp),axis=2)
if(label_present==1):
mask_cropped_tmp=np.reshape(mask_cropped,(nx,ny,1))
cropped_mask=np.concatenate((cropped_mask,mask_cropped_tmp),axis=2)
if(label_present==1):
return cropped_img,cropped_mask
else:
return cropped_img
# def load_acdc_cropped_img_labels(self, train_ids_list,label_present=1):
# """
# # Load the already created and stored a-priori ACDC image and its labels that are pre-processed: normalized and cropped to chosen dimensions
# input params :
# train_ids_list : patient ids of the image and label pairs to be loaded
# label_present : to indicate if the image has labels provided or not (0 is used for unlabeled images)
# returns:
# img_cat : stack of 3D images of all the patient id nos.
# mask_cat : corresponding stack of 3D segmentation masks of all the patient id nos.
# """
#
# count=0
# for study_id in train_ids_list:
# #print("study_id",study_id)
# img_fname = str(self.data_path_tr_cropped)+str(study_id)+'/img_cropped.npy'
# img_tmp=np.load(img_fname)
# if(label_present==1):
# mask_fname = str(self.data_path_tr_cropped)+str(study_id)+'/mask_cropped.npy'
# mask_tmp=np.load(mask_fname)
#
# if(count==0):
# img_cat=img_tmp
# if(label_present==1):
# mask_cat=mask_tmp
# count=1
# else:
# img_cat=np.concatenate((img_cat,img_tmp),axis=2)
# if(label_present==1):
# mask_cat=np.concatenate((mask_cat,mask_tmp),axis=2)
# if(label_present==1):
# return img_cat,mask_cat
# else:
# return img_cat
def load_cropped_img_labels(self, train_ids_list,label_present=1):
"""
# Load the already created and stored a-priori acdc/prostate/mmwhs image and its labels that are pre-processed: normalized and cropped to chosen dimensions
input params :
train_ids_list : patient ids of the image and label pairs to be loaded
label_present : to indicate if the image has labels provided or not (used for unlabeled images)
returns:
img_cat : stack of 3D images of all the patient id nos.
mask_cat : corresponding stack of 3D segmentation masks of all the patient id nos.
"""
count=0
for study_id in train_ids_list:
# Load the 3D image
img_fname = str(self.data_path_tr_cropped)+str(study_id)+'/img_cropped.nii.gz'
img_tmp_load = nib.load(img_fname)
img_tmp=img_tmp_load.get_data()
#load the mask if label is present
if(label_present==1):
# Load the segmentation mask
mask_fname = str(self.data_path_tr_cropped)+str(study_id)+'/mask_cropped.nii.gz'
mask_tmp_load = nib.load(mask_fname)
mask_tmp=mask_tmp_load.get_data()
if(count==0):
img_cat=img_tmp
if(label_present==1):
mask_cat=mask_tmp
count=1
else:
img_cat=np.concatenate((img_cat,img_tmp),axis=2)
if(label_present==1):
mask_cat=np.concatenate((mask_cat,mask_tmp),axis=2)
if(label_present==1):
return img_cat,mask_cat
else:
return img_cat