-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathcustomize.py
1209 lines (1044 loc) · 59.4 KB
/
customize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import argparse
import itertools
import logging
import math
import os
import shutil
import warnings
from pathlib import Path
from typing import List, Optional
import json
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed
from peft import LoraConfig
from peft.utils import get_peft_model_state_dict
from PIL import Image
from PIL.ImageOps import exif_transpose
from safetensors.torch import save_file
from torch.utils.data import Dataset
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import AutoTokenizer, PretrainedConfig
import diffusers
from diffusers import (
AutoencoderKL,
DDPMScheduler,
DPMSolverMultistepScheduler,
StableDiffusionXLPipeline,
UNet2DConditionModel,
)
from diffusers.loaders import LoraLoaderMixin
from diffusers.optimization import get_scheduler
from diffusers.training_utils import compute_snr
from diffusers.utils import (
convert_state_dict_to_diffusers,
is_wandb_available,
)
logger = get_logger(__name__)
def import_model_class_from_model_name_or_path(
pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder"
):
text_encoder_config = PretrainedConfig.from_pretrained(
pretrained_model_name_or_path, subfolder=subfolder, revision=revision
)
model_class = text_encoder_config.architectures[0]
if model_class == "CLIPTextModel":
from transformers import CLIPTextModel
return CLIPTextModel
elif model_class == "CLIPTextModelWithProjection":
from transformers import CLIPTextModelWithProjection
return CLIPTextModelWithProjection
else:
raise ValueError(f"{model_class} is not supported.")
def parse_args(input_args=None):
parser = argparse.ArgumentParser(description="Simple example of a training script.")
# pretrained model config
parser.add_argument("--pretrained_model_name_or_path", type=str, default="stabilityai/stable-diffusion-xl-base-1.0",)
parser.add_argument("--pretrained_vae_model_name_or_path", type=str, default="madebyollin/sdxl-vae-fp16-fix")
parser.add_argument("--revision", type=str, default=None)
parser.add_argument("--variant", type=str, default=None)
# data config
parser.add_argument("--config_dir", type=str, default="")
parser.add_argument("--config_name", type=str, default="")
# validation config
parser.add_argument("--validation_prompt", type=str, default=None, help="A prompt that is used during validation to verify that the model is learning.",)
parser.add_argument("--num_validation_images", type=int, default=0, help="Number of images that should be generated during validation with `validation_prompt`.",)
parser.add_argument("--validation_epochs", type=int, default=50000)
# use prior preservation
parser.add_argument("--with_prior_preservation", default=False, action="store_true", help="Flag to add prior preservation loss.",)
parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.")
# save config
parser.add_argument("--output_dir", type=str, default="outdir", help="The output directory where the model predictions and checkpoints will be written.",)
parser.add_argument("--checkpointing_steps", type=int, default=500, help="Save a checkpoint of the training state every X updates")
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
# dataloader config
parser.add_argument("--resolution", type=int, default=1024, help="The resolution for input images, all the images in the train/validation dataset will be resized to this")
parser.add_argument("--crops_coords_top_left_h", type=int, default=0, help=("Coordinate for (the height) to be included in the crop coordinate embeddings needed by SDXL UNet."),)
parser.add_argument("--crops_coords_top_left_w", type=int, default=0, help=("Coordinate for (the height) to be included in the crop coordinate embeddings needed by SDXL UNet."),)
parser.add_argument("--center_crop", default=False, action="store_true", help=("Whether to center crop the input images to the resolution. If not set, the images will be randomly" " cropped. The images will be resized to the resolution first before cropping."),)
parser.add_argument("--train_batch_size", type=int, default=1, help="Batch size (per device) for the training dataloader.")
parser.add_argument("--dataloader_num_workers", type=int, default=0, help=("Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."),)
parser.add_argument("--num_train_epochs", type=int, default=1)
parser.add_argument("--max_train_steps", type=int, default=1000, help="Total number of training steps to perform. If provided, overrides num_train_epochs.",)
parser.add_argument("--checkpoints_total_limit", type=int, default=None, help=("Max number of checkpoints to store."),)
parser.add_argument("--resume_from_checkpoint", type=str, default=None, help="Whether training should be resumed from a previous checkpoint.")
# train config
parser.add_argument("--dcoloss_beta", type=float, default=1000, help="Sigloss value for DCO loss, use -1 if do not using dco loss")
parser.add_argument("--train_text_encoder_ti", action="store_true", help=("Whether to use textual inversion"),)
parser.add_argument("--train_text_encoder", action="store_true", help="Whether to train the text encoder. If set, the text encoder should be float32 precision.",)
# optimizer config
parser.add_argument("--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.",)
parser.add_argument("--gradient_checkpointing", action="store_true", help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",)
parser.add_argument("--learning_rate", type=float, default=5e-5, help="Initial learning rate (after the potential warmup period) to use.",)
parser.add_argument("--text_encoder_lr", type=float, default=5e-6, help="Text encoder learning rate to use.",)
parser.add_argument("--scale_lr", action="store_true", default=False, help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",)
parser.add_argument("--lr_scheduler", type=str, default="constant", help=('The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' ' "constant", "constant_with_warmup"]'),)
parser.add_argument("--snr_gamma", type=float, default=None, help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. ""More details here: https://arxiv.org/abs/2303.09556.",)
parser.add_argument("--lr_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler.")
parser.add_argument("--lr_num_cycles", type=int, default=1, help="Number of hard resets of the lr in cosine_with_restarts scheduler.",)
parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
# optimizer config
parser.add_argument("--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes. Ignored if optimizer is not set to AdamW",)
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam and Prodigy optimizers.")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam and Prodigy optimizers.")
parser.add_argument("--adam_weight_decay", type=float, default=1e-04, help="Weight decay to use for unet params")
parser.add_argument("--adam_weight_decay_text_encoder", type=float, default=None, help="Weight decay to use for text_encoder")
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer and Prodigy optimizers.",)
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
# save config
parser.add_argument("--logging_dir", type=str, default="logs", help=("[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."),)
parser.add_argument("--allow_tf32", action="store_true", help=("Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"),)
parser.add_argument("--report_to", type=str, default="tensorboard", help=('The integration to report the results and logs to. Supported platforms are `"tensorboard"`' ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'),)
parser.add_argument("--mixed_precision", type=str, default="fp16", choices=["no", "fp16", "bf16"], help=("Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."),)
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
parser.add_argument("--rank", type=int, default=32, help=("The dimension of the LoRA update matrices."),)
parser.add_argument("--offset_noise", type=float, default=0.0)
if input_args is not None:
args = parser.parse_args(input_args)
else:
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
return args
# Taken from https://github.com/replicate/cog-sdxl/blob/main/dataset_and_utils.py
class TokenEmbeddingsHandler:
def __init__(self, text_encoders, tokenizers):
self.text_encoders = text_encoders
self.tokenizers = tokenizers
self.train_ids = None
self.inserting_tokens = None
self.embeddings_settings = {}
def initialize_new_tokens(self, inserting_tokens, initializer_tokens):
idx = 0
for tokenizer, text_encoder in zip(self.tokenizers, self.text_encoders):
assert isinstance(inserting_tokens, list), "inserting_tokens should be a list of strings."
assert all(
isinstance(tok, str) for tok in inserting_tokens
), "All elements in inserting_tokens should be strings."
self.inserting_tokens = inserting_tokens
special_tokens_dict = {"additional_special_tokens": self.inserting_tokens}
tokenizer.add_special_tokens(special_tokens_dict)
text_encoder.resize_token_embeddings(len(tokenizer))
self.train_ids = tokenizer.convert_tokens_to_ids(self.inserting_tokens)
std_token_embedding = text_encoder.text_model.embeddings.token_embedding.weight.data.std()
self.embeddings_settings[f"std_token_embedding_{idx}"] = std_token_embedding
print(f"{idx} text encodedr's std_token_embedding: {std_token_embedding}")
embeddings = []
embeddings_norm = []
for initializer_token in initializer_tokens:
if initializer_token == "":
emb = torch.randn(1, text_encoder.text_model.config.hidden_size).to(device=self.device).to(dtype=self.dtype) * std_token_embedding
embeddings.append(emb)
embeddings_norm.append(std_token_embedding)
else:
initializer_token_id = tokenizer.encode(initializer_token, add_special_tokens=False)
emb = text_encoder.text_model.embeddings.token_embedding.weight.data[initializer_token_id]
embeddings.append(emb)
embeddings_norm.append(emb.norm().item())
embeddings = torch.cat(embeddings, dim=0)
text_encoder.text_model.embeddings.token_embedding.weight.data[self.train_ids] = embeddings
embeddings_norm = torch.tensor(embeddings_norm).unsqueeze(1)
self.embeddings_settings[f"token_embedding_norm_{idx}"] = embeddings_norm
self.embeddings_settings[
f"original_embeddings_{idx}"
] = text_encoder.text_model.embeddings.token_embedding.weight.data.clone()
inu = torch.ones((len(tokenizer),), dtype=torch.bool)
inu[self.train_ids] = False
self.embeddings_settings[f"index_no_updates_{idx}"] = inu
idx += 1
def save_embeddings(self, file_path: str):
assert self.train_ids is not None, "Initialize new tokens before saving embeddings."
tensors = {}
# text_encoder_0 - CLIP ViT-L/14, text_encoder_1 - CLIP ViT-G/14
idx_to_text_encoder_name = {0: "clip_l", 1: "clip_g"}
for idx, text_encoder in enumerate(self.text_encoders):
assert text_encoder.text_model.embeddings.token_embedding.weight.data.shape[0] == len(
self.tokenizers[0]
), "Tokenizers should be the same."
new_token_embeddings = text_encoder.text_model.embeddings.token_embedding.weight.data[self.train_ids]
tensors[idx_to_text_encoder_name[idx]] = new_token_embeddings
save_file(tensors, file_path)
@property
def dtype(self):
return self.text_encoders[0].dtype
@property
def device(self):
return self.text_encoders[0].device
@torch.no_grad()
def retract_embeddings(self):
for idx, text_encoder in enumerate(self.text_encoders):
index_no_updates = self.embeddings_settings[f"index_no_updates_{idx}"]
text_encoder.text_model.embeddings.token_embedding.weight.data[index_no_updates] = (
self.embeddings_settings[f"original_embeddings_{idx}"][index_no_updates]
.to(device=text_encoder.device)
.to(dtype=text_encoder.dtype)
)
index_updates = ~index_no_updates
new_embeddings = text_encoder.text_model.embeddings.token_embedding.weight.data[index_updates]
new_embeddings = F.normalize(new_embeddings, dim=-1) * self.embeddings_settings[f"token_embedding_norm_{idx}"].view(-1, 1).to(device=text_encoder.device)
text_encoder.text_model.embeddings.token_embedding.weight.data[index_updates] = new_embeddings.to(device=text_encoder.device).to(dtype=text_encoder.dtype)
class TrainDataset(Dataset):
def __init__(self, args):
self.size = args.resolution
self.center_crop = args.center_crop
self.config_dir = args.config_dir
self.config_name = args.config_name
self.train_with_dco_loss = (args.dcoloss_beta > 0.)
self.train_text_encoder_ti = args.train_text_encoder_ti
self.with_prior_preservation = args.with_prior_preservation
with open(self.config_dir, 'r') as data_config:
data_cfg = json.load(data_config)[self.config_name]
self.instance_images = [Image.open(path) for path in data_cfg["images"]]
self.instance_prompts = [prompt for prompt in data_cfg["prompts"]]
if self.train_text_encoder_ti and self.train_with_dco_loss:
self.base_prompts = [prompt for prompt in data_cfg["base_prompts"]]
self.num_instance_images = len(self.instance_images)
self._length = self.num_instance_images
if self.with_prior_preservation:
self.num_class_images = args.num_class_images
class_dir = data_cfg["class_images_dir"]
self.class_images = [Image.open(class_dir+f"/{i}.png") for i in range(self.num_class_images)]
self.class_prompts = [prompt for prompt in data_cfg["class_prompts"]]
self._length = max(self.num_class_images, self.num_instance_images)
self.image_transforms = transforms.Compose(
[
transforms.Resize(self.size, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.CenterCrop(self.size) if self.center_crop else transforms.RandomCrop(self.size),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def __len__(self):
return self._length
def __getitem__(self, index):
example = {}
instance_image = self.instance_images[index % self.num_instance_images]
instance_image = exif_transpose(instance_image)
if not instance_image.mode == "RGB":
instance_image = instance_image.convert("RGB")
example["instance_images"] = self.image_transforms(instance_image)
prompt = self.instance_prompts[index % self.num_instance_images]
example["instance_prompt"] = prompt
if self.train_text_encoder_ti and self.train_with_dco_loss:
base_prompt = self.base_prompts[index % self.num_instance_images]
example["base_prompt"] = base_prompt
if self.with_prior_preservation:
class_image = self.class_images[index % self.num_class_images]
class_image = exif_transpose(class_image)
if not class_image.mode == "RGB":
class_image = class_image.convert("RGB")
example["class_images"] = self.image_transforms(class_image)
example["class_prompt"] = self.class_prompt
return example
def collate_fn(examples, args):
pixel_values = [example["instance_images"] for example in examples]
prompts = [example["instance_prompt"] for example in examples]
if args.train_text_encoder_ti and (args.dcoloss_beta > 0.):
base_prompts = [example["base_prompt"] for example in examples]
if args.with_prior_preservation:
pixel_values += [example["class_images"] for example in examples]
prompts += [example["class_prompt"] for example in examples]
if args.train_text_encoder_ti and (args.dcoloss_beta > 0.0):
base_prompts += [example["class_prompt"] for example in examples]
pixel_values = torch.stack(pixel_values)
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
batch = {"pixel_values": pixel_values, "prompts": prompts}
if args.train_text_encoder_ti and (args.dcoloss_beta > 0.0):
batch.update({"base_prompts": base_prompts})
return batch
def tokenize_prompt(tokenizer, prompt):
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
return text_input_ids
# Adapted from pipelines.StableDiffusionXLPipeline.encode_prompt
def encode_prompt(text_encoders, tokenizers, prompt, text_input_ids_list=None):
prompt_embeds_list = []
for i, text_encoder in enumerate(text_encoders):
if tokenizers is not None:
tokenizer = tokenizers[i]
text_input_ids = tokenize_prompt(tokenizer, prompt)
else:
assert text_input_ids_list is not None
text_input_ids = text_input_ids_list[i]
prompt_embeds = text_encoder(
text_input_ids.to(text_encoder.device),
output_hidden_states=True,
)
# We are only ALWAYS interested in the pooled output of the final text encoder
pooled_prompt_embeds = prompt_embeds[0]
prompt_embeds = prompt_embeds.hidden_states[-2]
bs_embed, seq_len, _ = prompt_embeds.shape
prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1)
prompt_embeds_list.append(prompt_embeds)
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1)
return prompt_embeds, pooled_prompt_embeds
def main(args):
logging_dir = Path(args.output_dir, args.logging_dir)
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with=args.report_to,
project_config=accelerator_project_config,
kwargs_handlers=[kwargs],
)
if args.report_to == "wandb":
if not is_wandb_available():
raise ImportError("Make sure to install wandb if you want to use it for logging during training.")
import wandb
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle the repository creation
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
# Load the tokenizers
tokenizer_one = AutoTokenizer.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="tokenizer",
revision=args.revision,
variant=args.variant,
use_fast=False,
)
tokenizer_two = AutoTokenizer.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="tokenizer_2",
revision=args.revision,
variant=args.variant,
use_fast=False,
)
# import correct text encoder classes
text_encoder_cls_one = import_model_class_from_model_name_or_path(
args.pretrained_model_name_or_path, args.revision
)
text_encoder_cls_two = import_model_class_from_model_name_or_path(
args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_2"
)
# Load scheduler and models
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
text_encoder_one = text_encoder_cls_one.from_pretrained(
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant
)
text_encoder_two = text_encoder_cls_two.from_pretrained(
args.pretrained_model_name_or_path, subfolder="text_encoder_2", revision=args.revision, variant=args.variant
)
vae_path = (
args.pretrained_model_name_or_path
if args.pretrained_vae_model_name_or_path is None
else args.pretrained_vae_model_name_or_path
)
vae = AutoencoderKL.from_pretrained(
vae_path,
subfolder="vae" if args.pretrained_vae_model_name_or_path is None else None,
revision=args.revision,
variant=args.variant,
)
vae_scaling_factor = vae.config.scaling_factor
unet = UNet2DConditionModel.from_pretrained(
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant
)
if args.train_text_encoder_ti:
with open(args.config_dir, 'r') as data_config:
data_cfg = json.load(data_config)[args.config_name]
inserting_tokens = data_cfg["inserting_tokens"]
initializer_tokens = data_cfg["initializer_tokens"]
logger.info(f"List of token identifiers: {inserting_tokens}")
# initialize the new tokens for textual inversion
embedding_handler = TokenEmbeddingsHandler(
[text_encoder_one, text_encoder_two], [tokenizer_one, tokenizer_two]
)
embedding_handler.initialize_new_tokens(
inserting_tokens=inserting_tokens,
initializer_tokens=initializer_tokens
)
# We only train the additional adapter LoRA layers
vae.requires_grad_(False)
text_encoder_one.requires_grad_(False)
text_encoder_two.requires_grad_(False)
unet.requires_grad_(False)
# For mixed precision training we cast all non-trainable weights (vae, non-lora text_encoder and non-lora unet) to half-precision
# as these weights are only used for inference, keeping weights in full precision is not required.
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Move unet, vae and text_encoder to device and cast to weight_dtype
unet.to(accelerator.device, dtype=weight_dtype)
# The VAE is always in float32 to avoid NaN losses.
vae.to(accelerator.device, dtype=torch.float32)
text_encoder_one.to(accelerator.device, dtype=weight_dtype)
text_encoder_two.to(accelerator.device, dtype=weight_dtype)
if args.gradient_checkpointing:
unet.enable_gradient_checkpointing()
if args.train_text_encoder:
text_encoder_one.gradient_checkpointing_enable()
text_encoder_two.gradient_checkpointing_enable()
# now we will add new LoRA weights to the attention layers
unet_lora_config = LoraConfig(
r=args.rank,
lora_alpha=args.rank,
init_lora_weights="gaussian",
target_modules=["to_k", "to_q", "to_v", "to_out.0"],
)
unet.add_adapter(unet_lora_config)
# The text encoder comes from 🤗 transformers, so we cannot directly modify it.
# So, instead, we monkey-patch the forward calls of its attention-blocks.
if args.train_text_encoder:
text_lora_config = LoraConfig(
r=args.rank,
lora_alpha=args.rank,
init_lora_weights="gaussian",
target_modules=["q_proj", "k_proj", "v_proj", "out_proj"],
)
text_encoder_one.add_adapter(text_lora_config)
text_encoder_two.add_adapter(text_lora_config)
# if we use textual inversion, we freeze all parameters except for the token embeddings
elif args.train_text_encoder_ti:
text_lora_parameters_one = []
for name, param in text_encoder_one.named_parameters():
if "token_embedding" in name:
# ensure that dtype is float32, even if rest of the model that isn't trained is loaded in fp16
param = param.to(dtype=torch.float32)
param.requires_grad = True
text_lora_parameters_one.append(param)
else:
param.requires_grad = False
text_lora_parameters_two = []
for name, param in text_encoder_two.named_parameters():
if "token_embedding" in name:
# ensure that dtype is float32, even if rest of the model that isn't trained is loaded in fp16
param = param.to(dtype=torch.float32)
param.requires_grad = True
text_lora_parameters_two.append(param)
else:
param.requires_grad = False
# Make sure the trainable params are in float32.
if args.mixed_precision == "fp16":
models = [unet]
if args.train_text_encoder:
models.extend([text_encoder_one, text_encoder_two])
for model in models:
for param in model.parameters():
# only upcast trainable parameters (LoRA) into fp32
if param.requires_grad:
param.data = param.to(torch.float32)
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
def save_model_hook(models, weights, output_dir):
if accelerator.is_main_process:
# there are only two options here. Either are just the unet attn processor layers
# or there are the unet and text encoder atten layers
unet_lora_layers_to_save = None
text_encoder_one_lora_layers_to_save = None
text_encoder_two_lora_layers_to_save = None
for model in models:
if isinstance(model, type(accelerator.unwrap_model(unet))):
unet_lora_layers_to_save = convert_state_dict_to_diffusers(get_peft_model_state_dict(model))
elif isinstance(model, type(accelerator.unwrap_model(text_encoder_one))):
if args.train_text_encoder:
text_encoder_one_lora_layers_to_save = convert_state_dict_to_diffusers(
get_peft_model_state_dict(model)
)
elif isinstance(model, type(accelerator.unwrap_model(text_encoder_two))):
if args.train_text_encoder:
text_encoder_two_lora_layers_to_save = convert_state_dict_to_diffusers(
get_peft_model_state_dict(model)
)
else:
raise ValueError(f"unexpected save model: {model.__class__}")
# make sure to pop weight so that corresponding model is not saved again
weights.pop()
StableDiffusionXLPipeline.save_lora_weights(
output_dir,
unet_lora_layers=unet_lora_layers_to_save,
text_encoder_lora_layers=text_encoder_one_lora_layers_to_save,
text_encoder_2_lora_layers=text_encoder_two_lora_layers_to_save,
)
if args.train_text_encoder_ti:
embedding_handler.save_embeddings(f"{output_dir}/learned_embeds.safetensors")
def load_model_hook(models, input_dir):
unet_ = None
text_encoder_one_ = None
text_encoder_two_ = None
while len(models) > 0:
model = models.pop()
if isinstance(model, type(accelerator.unwrap_model(unet))):
unet_ = model
elif isinstance(model, type(accelerator.unwrap_model(text_encoder_one))):
text_encoder_one_ = model
elif isinstance(model, type(accelerator.unwrap_model(text_encoder_two))):
text_encoder_two_ = model
else:
raise ValueError(f"unexpected save model: {model.__class__}")
lora_state_dict, network_alphas = LoraLoaderMixin.lora_state_dict(input_dir)
LoraLoaderMixin.load_lora_into_unet(lora_state_dict, network_alphas=network_alphas, unet=unet_)
text_encoder_state_dict = {k: v for k, v in lora_state_dict.items() if "text_encoder." in k}
LoraLoaderMixin.load_lora_into_text_encoder(
text_encoder_state_dict, network_alphas=network_alphas, text_encoder=text_encoder_one_
)
text_encoder_2_state_dict = {k: v for k, v in lora_state_dict.items() if "text_encoder_2." in k}
LoraLoaderMixin.load_lora_into_text_encoder(
text_encoder_2_state_dict, network_alphas=network_alphas, text_encoder=text_encoder_two_
)
accelerator.register_save_state_pre_hook(save_model_hook)
accelerator.register_load_state_pre_hook(load_model_hook)
# Enable TF32 for faster training on Ampere GPUs,
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
if args.allow_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
if args.scale_lr:
args.learning_rate = (
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
)
unet_lora_parameters = list(filter(lambda p: p.requires_grad, unet.parameters()))
if args.train_text_encoder:
text_lora_parameters_one = list(filter(lambda p: p.requires_grad, text_encoder_one.parameters()))
text_lora_parameters_two = list(filter(lambda p: p.requires_grad, text_encoder_two.parameters()))
# If neither --train_text_encoder nor --train_text_encoder_ti, text_encoders remain frozen during training
freeze_text_encoder = not (args.train_text_encoder or args.train_text_encoder_ti)
# Optimization parameters
unet_lora_parameters_with_lr = {"params": unet_lora_parameters, "lr": args.learning_rate}
if not freeze_text_encoder:
# different learning rate for text encoder and unet
text_lora_parameters_one_with_lr = {
"params": text_lora_parameters_one,
"weight_decay": args.adam_weight_decay_text_encoder
if args.adam_weight_decay_text_encoder
else args.adam_weight_decay,
"lr": args.text_encoder_lr if args.text_encoder_lr else args.learning_rate,
}
text_lora_parameters_two_with_lr = {
"params": text_lora_parameters_two,
"weight_decay": args.adam_weight_decay_text_encoder
if args.adam_weight_decay_text_encoder
else args.adam_weight_decay,
"lr": args.text_encoder_lr if args.text_encoder_lr else args.learning_rate,
}
params_to_optimize = [
unet_lora_parameters_with_lr,
text_lora_parameters_one_with_lr,
text_lora_parameters_two_with_lr,
]
else:
params_to_optimize = [unet_lora_parameters_with_lr]
# Optimizer creation
if args.use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError(
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
)
optimizer_class = bnb.optim.AdamW8bit
else:
optimizer_class = torch.optim.AdamW
optimizer = optimizer_class(
params_to_optimize,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
# Dataset and DataLoaders creation:
train_dataset = TrainDataset(args)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.train_batch_size,
shuffle=True,
collate_fn=lambda examples: collate_fn(examples, args),
num_workers=args.dataloader_num_workers,
)
# Computes additional embeddings/ids required by the SDXL UNet.
def compute_time_ids():
# Adapted from pipeline.StableDiffusionXLPipeline._get_add_time_ids
original_size = (args.resolution, args.resolution)
target_size = (args.resolution, args.resolution)
crops_coords_top_left = (args.crops_coords_top_left_h, args.crops_coords_top_left_w)
add_time_ids = list(original_size + crops_coords_top_left + target_size)
add_time_ids = torch.tensor([add_time_ids])
add_time_ids = add_time_ids.to(accelerator.device, dtype=weight_dtype)
return add_time_ids
tokenizers = [tokenizer_one, tokenizer_two]
text_encoders = [text_encoder_one, text_encoder_two]
def compute_text_embeddings(prompt, text_encoders, tokenizers):
with torch.no_grad():
prompt_embeds, pooled_prompt_embeds = encode_prompt(text_encoders, tokenizers, prompt)
prompt_embeds = prompt_embeds.to(accelerator.device)
pooled_prompt_embeds = pooled_prompt_embeds.to(accelerator.device)
return prompt_embeds, pooled_prompt_embeds
# Handle instance prompt.
instance_time_ids = compute_time_ids()
add_time_ids = instance_time_ids
if args.with_prior_preservation:
class_time_ids = compute_time_ids()
add_time_ids = torch.cat([add_time_ids, class_time_ids], dim=0)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
num_training_steps=args.max_train_steps * accelerator.num_processes,
num_cycles=args.lr_num_cycles,
power=args.lr_power,
)
# Prepare everything with our `accelerator`.
if not freeze_text_encoder:
unet, text_encoder_one, text_encoder_two, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
unet, text_encoder_one, text_encoder_two, optimizer, train_dataloader, lr_scheduler
)
else:
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
unet, optimizer, train_dataloader, lr_scheduler
)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
accelerator.init_trackers("fine-tune sdxl", config=vars(args))
# Train!
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num batches each epoch = {len(train_dataloader)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
global_step = 0
first_epoch = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint != "latest":
path = os.path.basename(args.resume_from_checkpoint)
else:
# Get the mos recent checkpoint
dirs = os.listdir(args.output_dir)
dirs = [d for d in dirs if d.startswith("checkpoint")]
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
path = dirs[-1] if len(dirs) > 0 else None
if path is None:
accelerator.print(
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
)
args.resume_from_checkpoint = None
initial_global_step = 0
else:
accelerator.print(f"Resuming from checkpoint {path}")
accelerator.load_state(os.path.join(args.output_dir, path))
global_step = int(path.split("-")[1])
initial_global_step = global_step
first_epoch = global_step // num_update_steps_per_epoch
else:
initial_global_step = 0
progress_bar = tqdm(
range(0, args.max_train_steps),
initial=initial_global_step,
desc="Steps",
# Only show the progress bar once on each machine.
disable=not accelerator.is_local_main_process,
)
for epoch in range(first_epoch, args.num_train_epochs):
# if performing any kind of optimization of text_encoder params
if args.train_text_encoder or args.train_text_encoder_ti:
text_encoder_one.train()
text_encoder_two.train()
# set top parameter requires_grad = True for gradient checkpointing works
if args.train_text_encoder:
text_encoder_one.text_model.embeddings.requires_grad_(True)
text_encoder_two.text_model.embeddings.requires_grad_(True)
unet.train()
for step, batch in enumerate(train_dataloader):
with accelerator.accumulate(unet):
prompts = batch["prompts"]
if args.train_text_encoder_ti and (args.dcoloss_beta > 0.0):
base_prompts = batch["base_prompts"]
base_prompt_embeds, base_add_embeds = compute_text_embeddings(
base_prompts, text_encoders, tokenizers
)
# encode batch prompts when custom prompts are provided for each image -
# if train_dataset.custom_instance_prompts:
if freeze_text_encoder:
prompt_embeds, unet_add_text_embeds = compute_text_embeddings(
prompts, text_encoders, tokenizers
)
else:
tokens_one = tokenize_prompt(tokenizer_one, prompts)
tokens_two = tokenize_prompt(tokenizer_two, prompts)
pixel_values = batch["pixel_values"].to(dtype=vae.dtype)
model_input = vae.encode(pixel_values).latent_dist.sample()
model_input = model_input * vae_scaling_factor
if args.pretrained_vae_model_name_or_path is None:
model_input = model_input.to(weight_dtype)
# Sample noise that we'll add to the latents
noise = torch.randn_like(model_input)
noise = noise + args.offset_noise * torch.randn(model_input.shape[0], model_input.shape[1], 1, 1, device=model_input.device)
bsz = model_input.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(
0, noise_scheduler.config.num_train_timesteps, (bsz,), device=model_input.device
)
timesteps = timesteps.long()
# Add noise to the model input according to the noise magnitude at each timestep
noisy_model_input = noise_scheduler.add_noise(model_input, noise, timesteps)
# Calculate the elements to repeat depending on the use of prior-preservation and custom captions.
elems_to_repeat_text_embeds = 1
elems_to_repeat_time_ids = bsz // 2 if args.with_prior_preservation else bsz
# Predict the noise residual
if freeze_text_encoder:
unet_added_conditions = {
"time_ids": add_time_ids.repeat(elems_to_repeat_time_ids, 1),
"text_embeds": unet_add_text_embeds.repeat(elems_to_repeat_text_embeds, 1),
}
prompt_embeds_input = prompt_embeds.repeat(elems_to_repeat_text_embeds, 1, 1)
model_pred = unet(
noisy_model_input,
timesteps,
prompt_embeds_input,
added_cond_kwargs=unet_added_conditions,
).sample
if args.dcoloss_beta > 0.0:
with torch.no_grad():
cross_attention_kwargs = {"scale": 0.0}
refer_pred = unet(
noisy_model_input,
timesteps,
prompt_embeds_input,
added_cond_kwargs=unet_added_conditions,
cross_attention_kwargs=cross_attention_kwargs,
).sample
else:
unet_added_conditions = {"time_ids": add_time_ids.repeat(elems_to_repeat_time_ids, 1)}
prompt_embeds, pooled_prompt_embeds = encode_prompt(
text_encoders=[text_encoder_one, text_encoder_two],
tokenizers=None,
prompt=None,
text_input_ids_list=[tokens_one, tokens_two],
)
unet_added_conditions.update(
{"text_embeds": pooled_prompt_embeds.repeat(elems_to_repeat_text_embeds, 1)}
)
prompt_embeds_input = prompt_embeds.repeat(elems_to_repeat_text_embeds, 1, 1)
model_pred = unet(
noisy_model_input, timesteps, prompt_embeds_input, added_cond_kwargs=unet_added_conditions
).sample
if args.dcoloss_beta > 0.0:
base_prompts = batch["base_prompts"]
with torch.no_grad():
base_prompt_embeds, base_add_embeds = compute_text_embeddings(
base_prompts, text_encoders, tokenizers
)
cross_attention_kwargs = {"scale": 0.0}
base_added_conditions = {"time_ids": add_time_ids, "text_embeds": base_add_embeds}
refer_pred = unet(
noisy_model_input,
timesteps,
base_prompt_embeds,
added_cond_kwargs=base_added_conditions,
cross_attention_kwargs=cross_attention_kwargs
).sample
# Get the target for loss depending on the prediction type
if noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif noise_scheduler.config.prediction_type == "v_prediction":
target = noise_scheduler.get_velocity(model_input, noise, timesteps)
else:
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
if args.with_prior_preservation:
# Chunk the noise and model_pred into two parts and compute the loss on each part separately.
model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0)
target, target_prior = torch.chunk(target, 2, dim=0)
prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean")
if args.snr_gamma is None:
if args.dcoloss_beta > 0.0:
loss_model = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
loss_refer = F.mse_loss(refer_pred.float(), target.float(), reduction="mean")
diff = loss_model - loss_refer
inside_term = -1 * args.dcoloss_beta * diff
loss = -1 * torch.nn.LogSigmoid()(inside_term)
else:
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
else:
# Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556.
# Since we predict the noise instead of x_0, the original formulation is slightly changed.
# This is discussed in Section 4.2 of the same paper.
if args.with_prior_preservation:
# if we're using prior preservation, we calc snr for instance loss only -
# and hence only need timesteps corresponding to instance images
snr_timesteps, _ = torch.chunk(timesteps, 2, dim=0)
else:
snr_timesteps = timesteps
snr = compute_snr(noise_scheduler, snr_timesteps)
base_weight = (
torch.stack([snr, args.snr_gamma * torch.ones_like(snr_timesteps)], dim=1).min(dim=1)[0] / snr
)
if noise_scheduler.config.prediction_type == "v_prediction":
# Velocity objective needs to be floored to an SNR weight of one.
mse_loss_weights = base_weight + 1
else:
# Epsilon and sample both use the same loss weights.
mse_loss_weights = base_weight
if args.dcoloss_beta > 0.0:
loss_model = F.mse_loss(model_pred.float(), target.float(), reduction="none")
loss_model = loss_model.mean(dim=list(range(1, len(loss_model.shape)))) * mse_loss_weights
loss_model = loss_model.mean()
loss_refer = F.mse_loss(refer_pred.float(), target.float(), reduction="none")
loss_refer = loss_refer.mean(dim=list(range(1, len(loss_refer.shape)))) * mse_loss_weights
loss_refer = loss_refer.mean()
diff = loss_model - loss_refer
inside_term = -1 * args.dcoloss_beta * diff
loss = -1 * torch.nn.LogSigmoid()(inside_term)
else:
loss = F.mse_loss(model_pred.float(), target.float(), reduction="none")
loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights
loss = loss.mean()
if args.with_prior_preservation:
# Add the prior loss to the instance loss.
loss = loss + args.prior_loss_weight * prior_loss
accelerator.backward(loss)
if accelerator.sync_gradients:
params_to_clip = (
itertools.chain(unet_lora_parameters, text_lora_parameters_one, text_lora_parameters_two)
if (args.train_text_encoder or args.train_text_encoder_ti)
else unet_lora_parameters
)
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# every step, we reset the embeddings to the original embeddings.
if args.train_text_encoder_ti:
embedding_handler.retract_embeddings()