forked from steveicarus/iverilog
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexpr_synth.cc
1643 lines (1381 loc) · 49.8 KB
/
expr_synth.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright (c) 1999-2024 Stephen Williams ([email protected])
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
# include "config.h"
# include "compiler.h"
# include <cstdlib>
# include <iostream>
# include "netlist.h"
# include "netvector.h"
# include "netparray.h"
# include "netmisc.h"
# include "ivl_assert.h"
using namespace std;
static NetNet* convert_to_real_const(Design*des, NetScope*scope, NetEConst*expr)
{
verireal vrl(expr->value().as_double());
NetECReal rlval(vrl);
NetNet* sig = rlval.synthesize(des, scope, 0);
return sig;
}
/* Note that lsig, rsig and real_args are references. */
static bool process_binary_args(Design*des, NetScope*scope, NetExpr*root,
NetExpr*left, NetExpr*right,
NetNet*&lsig, NetNet*&rsig, bool&real_args)
{
if (left->expr_type() == IVL_VT_REAL ||
right->expr_type() == IVL_VT_REAL) {
real_args = true;
/* Convert the arguments to real. Handle the special
cases of constants, which can be converted more directly. */
if (left->expr_type() == IVL_VT_REAL) {
lsig = left->synthesize(des, scope, root);
} else if (NetEConst*tmpc = dynamic_cast<NetEConst*> (left)) {
lsig = convert_to_real_const(des, scope, tmpc);
} else {
NetNet*tmp = left->synthesize(des, scope, root);
lsig = cast_to_real(des, scope, tmp);
}
if (right->expr_type() == IVL_VT_REAL) {
rsig = right->synthesize(des, scope, root);
} else if (NetEConst*tmpc = dynamic_cast<NetEConst*> (right)) {
rsig = convert_to_real_const(des, scope, tmpc);
} else {
NetNet*tmp = right->synthesize(des, scope, root);
rsig = cast_to_real(des, scope, tmp);
}
} else {
real_args = false;
lsig = left->synthesize(des, scope, root);
rsig = right->synthesize(des, scope, root);
}
if (lsig == 0 || rsig == 0) return true;
else return false;
}
NetNet* NetExpr::synthesize(Design*des, NetScope*, NetExpr*)
{
cerr << get_fileline() << ": internal error: cannot synthesize expression: "
<< *this << endl;
des->errors += 1;
return 0;
}
/*
* Make an LPM_ADD_SUB device from addition operators.
*/
NetNet* NetEBAdd::synthesize(Design*des, NetScope*scope, NetExpr*root)
{
ivl_assert(*this, (op()=='+') || (op()=='-'));
NetNet *lsig=0, *rsig=0;
bool real_args=false;
if (process_binary_args(des, scope, root, left_, right_, lsig, rsig,
real_args)) {
return 0;
}
ivl_assert(*this, expr_width() >= lsig->vector_width());
ivl_assert(*this, expr_width() >= rsig->vector_width());
unsigned width;
if (expr_type() == IVL_VT_REAL) {
width = 1;
if (lsig->data_type() != IVL_VT_REAL)
lsig = cast_to_real(des, scope, lsig);
if (rsig->data_type() != IVL_VT_REAL)
rsig = cast_to_real(des, scope, rsig);
} else {
lsig = pad_to_width(des, lsig, expr_width(), *this);
rsig = pad_to_width(des, rsig, expr_width(), *this);
ivl_assert(*this, lsig->vector_width() == rsig->vector_width());
width=lsig->vector_width();
}
perm_string path = lsig->scope()->local_symbol();
netvector_t*osig_vec = new netvector_t(expr_type(), width-1, 0);
osig_vec->set_signed(has_sign());
NetNet*osig = new NetNet(lsig->scope(), path, NetNet::IMPLICIT, osig_vec);
osig->set_line(*this);
osig->local_flag(true);
perm_string oname = osig->scope()->local_symbol();
NetAddSub *adder = new NetAddSub(lsig->scope(), oname, width);
adder->set_line(*this);
connect(lsig->pin(0), adder->pin_DataA());
connect(rsig->pin(0), adder->pin_DataB());
connect(osig->pin(0), adder->pin_Result());
des->add_node(adder);
switch (op()) {
case '+':
adder->attribute(perm_string::literal("LPM_Direction"), verinum("ADD"));
break;
case '-':
adder->attribute(perm_string::literal("LPM_Direction"), verinum("SUB"));
break;
}
return osig;
}
/*
* The bitwise logic operators are turned into discrete gates pretty
* easily. Synthesize the left and right sub-expressions to get
* signals, then just connect a single gate to each bit of the vector
* of the expression.
*/
NetNet* NetEBBits::synthesize(Design*des, NetScope*scope, NetExpr*root)
{
NetNet*lsig = left_->synthesize(des, scope, root);
NetNet*rsig = right_->synthesize(des, scope, root);
if (lsig == 0 || rsig == 0) return 0;
/* You cannot do bitwise operations on real values. */
if (lsig->data_type() == IVL_VT_REAL ||
rsig->data_type() == IVL_VT_REAL) {
cerr << get_fileline() << ": error: " << human_readable_op(op_)
<< " operator may not have REAL operands." << endl;
des->errors += 1;
return 0;
}
unsigned width = expr_width();
if (rsig->vector_width() > width) width = rsig->vector_width();
lsig = pad_to_width(des, lsig, width, *this);
rsig = pad_to_width(des, rsig, width, *this);
ivl_assert(*this, lsig->vector_width() == rsig->vector_width());
netvector_t*osig_vec = new netvector_t(expr_type(), width-1, 0);
NetNet*osig = new NetNet(scope, scope->local_symbol(),
NetNet::IMPLICIT, osig_vec);
osig->set_line(*this);
osig->local_flag(true);
perm_string oname = scope->local_symbol();
NetLogic*gate;
switch (op()) {
case '&':
gate = new NetLogic(scope, oname, 3, NetLogic::AND, width, true);
break;
case 'A':
gate = new NetLogic(scope, oname, 3, NetLogic::NAND, width, true);
break;
case '|':
gate = new NetLogic(scope, oname, 3, NetLogic::OR, width, true);
break;
case '^':
gate = new NetLogic(scope, oname, 3, NetLogic::XOR, width, true);
break;
case 'O':
gate = new NetLogic(scope, oname, 3, NetLogic::NOR, width, true);
break;
case 'X':
gate = new NetLogic(scope, oname, 3, NetLogic::XNOR, width, true);
break;
default:
gate = NULL;
ivl_assert(*this, 0);
}
connect(osig->pin(0), gate->pin(0));
connect(lsig->pin(0), gate->pin(1));
connect(rsig->pin(0), gate->pin(2));
gate->set_line(*this);
des->add_node(gate);
return osig;
}
NetNet* NetEBComp::synthesize(Design*des, NetScope*scope, NetExpr*root)
{
NetNet *lsig=0, *rsig=0;
unsigned width;
bool real_args=false;
if (process_binary_args(des, scope, root, left_, right_, lsig, rsig,
real_args)) {
return 0;
}
if (real_args) {
width = 1;
} else {
width = lsig->vector_width();
if (rsig->vector_width() > width) width = rsig->vector_width();
if (lsig->get_signed())
lsig = pad_to_width_signed(des, lsig, width, *this);
else
lsig = pad_to_width(des, lsig, width, *this);
if (rsig->get_signed())
rsig = pad_to_width_signed(des, rsig, width, *this);
else
rsig = pad_to_width(des, rsig, width, *this);
}
netvector_t*osig_vec = new netvector_t(IVL_VT_LOGIC);
NetNet*osig = new NetNet(scope, scope->local_symbol(),
NetNet::IMPLICIT, osig_vec);
osig->set_line(*this);
osig->local_flag(true);
// Test if the comparison is signed.
//
// Note 1: This is not the same as asking if the result is
// signed. In fact, the result will typically be UNsigned. The
// decision to make the comparison signed depends on the
// operand expressions.
//
// Note 2: The operand expressions may be signed even if the
// sig that comes out of synthesis is unsigned. The $signed()
// function marks the expression but doesn't change the
// underlying signals.
bool signed_compare = left_->has_sign() && right_->has_sign();
if (debug_elaborate) {
cerr << get_fileline() << ": debug: Comparison (" << op_ << ")"
<< " is " << (signed_compare? "signed" : "unsigned")
<< endl;
cerr << get_fileline() << ": : lsig is "
<< (lsig->get_signed()? "signed" : "unsigned")
<< " rsig is " << (rsig->get_signed()? "signed" : "unsigned")
<< endl;
}
if (op_ == 'E' || op_ == 'N') {
NetCaseCmp*gate = new NetCaseCmp(scope, scope->local_symbol(),
width, op_=='E' ? NetCaseCmp::EEQ : NetCaseCmp::NEQ);
gate->set_line(*this);
connect(gate->pin(0), osig->pin(0));
connect(gate->pin(1), lsig->pin(0));
connect(gate->pin(2), rsig->pin(0));
des->add_node(gate);
return osig;
}
if (op_ == 'w' || op_ == 'W') {
NetCaseCmp*gate = new NetCaseCmp(scope, scope->local_symbol(),
width, op_=='w' ? NetCaseCmp::WEQ : NetCaseCmp::WNE);
gate->set_line(*this);
connect(gate->pin(0), osig->pin(0));
connect(gate->pin(1), lsig->pin(0));
connect(gate->pin(2), rsig->pin(0));
des->add_node(gate);
return osig;
}
/* Handle the special case of a single bit equality
operation. Make an XNOR gate instead of a comparator. */
if ((width == 1) && (op_ == 'e') && !real_args) {
NetLogic*gate = new NetLogic(scope, scope->local_symbol(),
3, NetLogic::XNOR, 1, true);
gate->set_line(*this);
connect(gate->pin(0), osig->pin(0));
connect(gate->pin(1), lsig->pin(0));
connect(gate->pin(2), rsig->pin(0));
des->add_node(gate);
return osig;
}
/* Handle the special case of a single bit inequality
operation. This is similar to single bit equality, but uses
an XOR instead of an XNOR gate. */
if ((width == 1) && (op_ == 'n') && !real_args) {
NetLogic*gate = new NetLogic(scope, scope->local_symbol(),
3, NetLogic::XOR, 1, true);
gate->set_line(*this);
connect(gate->pin(0), osig->pin(0));
connect(gate->pin(1), lsig->pin(0));
connect(gate->pin(2), rsig->pin(0));
des->add_node(gate);
return osig;
}
NetCompare*dev = new NetCompare(scope, scope->local_symbol(), width);
dev->set_line(*this);
des->add_node(dev);
connect(dev->pin_DataA(), lsig->pin(0));
connect(dev->pin_DataB(), rsig->pin(0));
switch (op_) {
case '<':
connect(dev->pin_ALB(), osig->pin(0));
dev->set_signed(signed_compare);
break;
case '>':
connect(dev->pin_AGB(), osig->pin(0));
dev->set_signed(signed_compare);
break;
case 'E': // === ?
if (real_args) {
cerr << get_fileline() << ": error: Case equality may "
"not have real operands." << endl;
des->errors += 1;
return 0;
}
// fallthrough
case 'e': // ==
connect(dev->pin_AEB(), osig->pin(0));
break;
case 'G': // >=
connect(dev->pin_AGEB(), osig->pin(0));
dev->set_signed(signed_compare);
break;
case 'L': // <=
connect(dev->pin_ALEB(), osig->pin(0));
dev->set_signed(signed_compare);
break;
case 'N': // !==
if (real_args) {
cerr << get_fileline() << ": error: Case inequality may "
"not have real operands." << endl;
des->errors += 1;
return 0;
}
// fallthrough
case 'n': // !=
connect(dev->pin_ANEB(), osig->pin(0));
break;
default:
cerr << get_fileline() << ": internal error: cannot synthesize "
"comparison: " << *this << endl;
des->errors += 1;
return 0;
}
return osig;
}
NetNet* NetEBPow::synthesize(Design*des, NetScope*scope, NetExpr*root)
{
NetNet *lsig=0, *rsig=0;
unsigned width;
bool real_args=false;
if (process_binary_args(des, scope, root, left_, right_, lsig, rsig,
real_args)) {
return 0;
}
if (real_args) width = 1;
else width = expr_width();
NetPow*powr = new NetPow(scope, scope->local_symbol(), width,
lsig->vector_width(),
rsig->vector_width());
powr->set_line(*this);
des->add_node(powr);
// The lpm_pwr object only cares about the signedness of the exponent.
powr->set_signed( right_->has_sign() );
connect(powr->pin_DataA(), lsig->pin(0));
connect(powr->pin_DataB(), rsig->pin(0));
netvector_t*osig_vec = new netvector_t(expr_type(), width-1, 0);
osig_vec->set_signed(has_sign());
NetNet*osig = new NetNet(scope, scope->local_symbol(),
NetNet::IMPLICIT, osig_vec);
osig->set_line(*this);
osig->local_flag(true);
connect(powr->pin_Result(), osig->pin(0));
return osig;
}
NetNet* NetEBMult::synthesize(Design*des, NetScope*scope, NetExpr*root)
{
NetNet *lsig=0, *rsig=0;
unsigned width;
bool real_args=false;
if (process_binary_args(des, scope, root, left_, right_, lsig, rsig,
real_args)) {
return 0;
}
if (real_args) width = 1;
else width = expr_width();
NetMult*mult = new NetMult(scope, scope->local_symbol(),
width,
lsig->vector_width(),
rsig->vector_width());
mult->set_line(*this);
des->add_node(mult);
mult->set_signed( has_sign() );
connect(mult->pin_DataA(), lsig->pin(0));
connect(mult->pin_DataB(), rsig->pin(0));
netvector_t*osig_vec = new netvector_t(expr_type(), width-1, 0);
osig_vec->set_signed(has_sign());
NetNet*osig = new NetNet(scope, scope->local_symbol(),
NetNet::IMPLICIT, osig_vec);
osig->set_line(*this);
osig->local_flag(true);
connect(mult->pin_Result(), osig->pin(0));
return osig;
}
NetNet* NetEBDiv::synthesize(Design*des, NetScope*scope, NetExpr*root)
{
NetNet *lsig=0, *rsig=0;
unsigned width;
bool real_args=false;
if (process_binary_args(des, scope, root, left_, right_, lsig, rsig,
real_args)) {
return 0;
}
if (real_args) width = 1;
else width = expr_width();
netvector_t*osig_vec = new netvector_t(lsig->data_type(), width-1, 0);
osig_vec->set_signed(has_sign());
NetNet*osig = new NetNet(scope, scope->local_symbol(),
NetNet::IMPLICIT, osig_vec);
osig->set_line(*this);
osig->local_flag(true);
switch (op()) {
case '/': {
NetDivide*div = new NetDivide(scope, scope->local_symbol(),
width,
lsig->vector_width(),
rsig->vector_width());
div->set_line(*this);
div->set_signed(has_sign());
des->add_node(div);
connect(div->pin_DataA(), lsig->pin(0));
connect(div->pin_DataB(), rsig->pin(0));
connect(div->pin_Result(),osig->pin(0));
break;
}
case '%': {
/* Baseline Verilog does not support the % operator with
real arguments, but we allow it in our extended form. */
if (real_args && !gn_icarus_misc_flag) {
cerr << get_fileline() << ": error: Modulus operator "
"may not have REAL operands." << endl;
des->errors += 1;
return 0;
}
NetModulo*div = new NetModulo(scope, scope->local_symbol(),
width,
lsig->vector_width(),
rsig->vector_width());
div->set_line(*this);
div->set_signed(has_sign());
des->add_node(div);
connect(div->pin_DataA(), lsig->pin(0));
connect(div->pin_DataB(), rsig->pin(0));
connect(div->pin_Result(),osig->pin(0));
break;
}
default: {
cerr << get_fileline() << ": internal error: "
<< "NetEBDiv has unexpected op() code: "
<< op() << endl;
des->errors += 1;
delete osig;
return 0;
}
}
return osig;
}
NetNet* NetEBLogic::synthesize(Design*des, NetScope*scope, NetExpr*root)
{
NetNet*lsig = left_->synthesize(des, scope, root);
NetNet*rsig = right_->synthesize(des, scope, root);
if (lsig == 0 || rsig == 0) return 0;
/* Any real value should have already been converted to a bit value. */
if (lsig->data_type() == IVL_VT_REAL ||
rsig->data_type() == IVL_VT_REAL) {
cerr << get_fileline() << ": internal error: "
<< human_readable_op(op_)
<< " is missing real to bit conversion." << endl;
des->errors += 1;
return 0;
}
NetLogic*olog;
perm_string oname = scope->local_symbol();
/* Create the logic OR/AND gate. This has a single bit output,
* with single bit inputs for the two operands. */
switch (op()) {
case 'a':
olog = new NetLogic(scope, oname, 3, NetLogic::AND, 1, true);
break;
case 'o':
olog = new NetLogic(scope, oname, 3, NetLogic::OR, 1, true);
break;
case 'q':
olog = new NetLogic(scope, oname, 3, NetLogic::IMPL, 1, true);
break;
case 'Q':
olog = new NetLogic(scope, oname, 3, NetLogic::EQUIV, 1, true);
break;
default:
cerr << get_fileline() << ": sorry: "
<< human_readable_op(op_)
<< " is not currently supported." << endl;
des->errors += 1;
return 0;
}
olog->set_line(*this);
des->add_node(olog);
netvector_t*osig_tmp = new netvector_t(expr_type());
NetNet*osig = new NetNet(scope, scope->local_symbol(),
NetNet::IMPLICIT, osig_tmp);
osig->set_line(*this);
osig->local_flag(true);
connect(osig->pin(0), olog->pin(0));
/* The left and right operands have already been reduced to a
* single bit value, so just connect then to the logic gate. */
ivl_assert(*this, lsig->pin_count() == 1);
connect(lsig->pin(0), olog->pin(1));
ivl_assert(*this, rsig->pin_count() == 1);
connect(rsig->pin(0), olog->pin(2));
return osig;
}
NetNet* NetEBShift::synthesize(Design*des, NetScope*scope, NetExpr*root)
{
eval_expr(right_);
NetNet*lsig = left_->synthesize(des, scope, root);
if (lsig == 0) return 0;
/* Cannot shift a real values. */
if (lsig->data_type() == IVL_VT_REAL) {
cerr << get_fileline() << ": error: shift operator ("
<< human_readable_op(op_)
<< ") cannot shift a real values." << endl;
des->errors += 1;
return 0;
}
const bool right_flag = op_ == 'r' || op_ == 'R';
const bool signed_flag = has_sign() && op_ == 'R';
/* Detect the special case where the shift amount is
constant. Evaluate the shift amount, and simply reconnect
the left operand to the output, but shifted. */
if (NetEConst*rcon = dynamic_cast<NetEConst*>(right_)) {
verinum shift_v = rcon->value();
long shift = shift_v.as_long();
if (right_flag)
shift = 0-shift;
if (shift == 0)
return lsig;
netvector_t*osig_vec = new netvector_t(expr_type(), expr_width()-1,0);
NetNet*osig = new NetNet(scope, scope->local_symbol(),
NetNet::IMPLICIT, osig_vec);
osig->set_line(*this);
osig->local_flag(true);
// ushift is the amount of pad created by the shift.
unsigned long ushift = shift>=0? shift : -shift;
ivl_assert(*this, ushift < osig->vector_width());
// part_width is the bits of the vector that survive the shift.
unsigned long part_width = osig->vector_width() - ushift;
// Create a part select to reduce the width of the lsig
// to the amount left by the shift.
NetPartSelect*psel = new NetPartSelect(lsig, shift<0? ushift : 0,
part_width,
NetPartSelect::VP,
signed_flag && right_flag);
psel->set_line(*this);
des->add_node(psel);
netvector_t*psig_vec = new netvector_t(expr_type(), part_width-1, 0);
NetNet*psig = new NetNet(scope, scope->local_symbol(),
NetNet::IMPLICIT, psig_vec);
psig->set_line(*this);
psig->local_flag(true);
connect(psig->pin(0), psel->pin(0));
// Handle the special case of a signed right shift. In
// this case, use the NetSignExtend device to pad the
// result to the desired width.
if (signed_flag && right_flag) {
NetSignExtend*pad = new NetSignExtend(scope, scope->local_symbol(),
osig->vector_width());
pad->set_line(*this);
des->add_node(pad);
connect(pad->pin(1), psig->pin(0));
connect(pad->pin(0), osig->pin(0));
return osig;
}
// Other cases are handled by zero-extending on the
// proper end.
verinum znum (verinum::V0, ushift, true);
NetConst*zcon = new NetConst(scope, scope->local_symbol(),
znum);
des->add_node(zcon);
netvector_t*zsig_vec = new netvector_t(osig->data_type(),
znum.len()-1, 0);
NetNet*zsig = new NetNet(scope, scope->local_symbol(),
NetNet::WIRE, zsig_vec);
zsig->set_line(*this);
zsig->local_flag(true);
connect(zcon->pin(0), zsig->pin(0));
NetConcat*ccat = new NetConcat(scope, scope->local_symbol(),
osig->vector_width(), 2);
ccat->set_line(*this);
des->add_node(ccat);
connect(ccat->pin(0), osig->pin(0));
if (shift > 0) {
// Left shift.
connect(ccat->pin(1), zsig->pin(0));
connect(ccat->pin(2), psig->pin(0));
} else {
// Right shift
connect(ccat->pin(1), psig->pin(0));
connect(ccat->pin(2), zsig->pin(0));
}
return osig;
}
NetNet*rsig = right_->synthesize(des, scope, root);
if (rsig == 0) return 0;
netvector_t*osig_vec = new netvector_t(expr_type(), expr_width()-1, 0);
NetNet*osig = new NetNet(scope, scope->local_symbol(),
NetNet::IMPLICIT, osig_vec);
osig->set_line(*this);
osig->local_flag(true);
NetCLShift*dev = new NetCLShift(scope, scope->local_symbol(),
osig->vector_width(),
rsig->vector_width(),
right_flag, signed_flag);
dev->set_line(*this);
des->add_node(dev);
connect(dev->pin_Result(), osig->pin(0));
ivl_assert(*this, lsig->vector_width() == dev->width());
connect(dev->pin_Data(), lsig->pin(0));
connect(dev->pin_Distance(), rsig->pin(0));
return osig;
}
NetNet* NetEConcat::synthesize(Design*des, NetScope*scope, NetExpr*root)
{
/* First, synthesize the operands. */
unsigned num_parms = parms_.size();
NetNet**tmp = new NetNet*[parms_.size()];
bool flag = true;
ivl_variable_type_t data_type = IVL_VT_NO_TYPE;
for (unsigned idx = 0 ; idx < parms_.size() ; idx += 1) {
if (parms_[idx]->expr_width() == 0) {
/* We need to synthesize a replication of zero. */
tmp[idx] = parms_[idx]->synthesize(des, scope, root);
ivl_assert(*this, tmp[idx] == 0);
num_parms -= 1;
} else {
tmp[idx] = parms_[idx]->synthesize(des, scope, root);
if (tmp[idx] == 0) flag = false;
/* Set the data type to the first one found. */
switch (data_type) {
case IVL_VT_NO_TYPE:
data_type = tmp[idx]->data_type();
break;
case IVL_VT_BOOL:
if (tmp[idx]->data_type()==IVL_VT_LOGIC)
data_type = IVL_VT_LOGIC;
break;
default:
break;
}
}
}
if (flag == false) {
delete[]tmp;
return 0;
}
ivl_assert(*this, data_type != IVL_VT_NO_TYPE);
/* If this is a replication of zero just return 0. */
if (expr_width() == 0) {
delete[]tmp;
return 0;
}
NetNet *osig = nullptr;
if (num_parms != 1) {
/* Make a NetNet object to carry the output vector. */
auto osig_vec = new netvector_t(data_type, expr_width() / repeat() - 1, 0);
osig = new NetNet(scope, scope->local_symbol(), NetNet::IMPLICIT,
osig_vec);
osig->set_line(*this);
osig->local_flag(true);
auto cncat = new NetConcat(scope, scope->local_symbol(),
osig->vector_width(), num_parms);
cncat->set_line(*this);
des->add_node(cncat);
connect(cncat->pin(0), osig->pin(0));
unsigned count_input_width = 0;
unsigned cur_pin = 1;
for (unsigned idx = 0 ; idx < parms_.size() ; idx += 1) {
unsigned concat_item = parms_.size()-idx-1;
if (tmp[concat_item] == 0) continue;
connect(cncat->pin(cur_pin), tmp[concat_item]->pin(0));
cur_pin += 1;
count_input_width += tmp[concat_item]->vector_width();
}
if (count_input_width != osig->vector_width()) {
cerr << get_fileline() << ": internal error: "
<< "NetEConcat input width = " << count_input_width
<< ", expecting " << osig->vector_width()
<< endl;
des->errors += 1;
}
} else {
/* There is exactly one input signal */
for (unsigned idx = 0; idx < parms_.size(); idx++) {
if (tmp[idx]) {
osig = tmp[idx];
break;
}
}
ivl_assert(*this, osig);
if (osig->get_signed()) {
// A concatenation is always unsigned, so make a new signal to
// reflect this.
NetNet*isig = osig;
auto osig_vec = new netvector_t(data_type, isig->vector_width() - 1, 0);
osig = new NetNet(scope, scope->local_symbol(), NetNet::IMPLICIT,
osig_vec);
osig->set_line(*this);
osig->local_flag(true);
connect(isig->pin(0), osig->pin(0));
}
}
if (repeat() != 1) {
auto rep = new NetReplicate(scope, scope->local_symbol(),
expr_width(), repeat());
rep->set_line(*this);
des->add_node(rep);
connect(rep->pin(1), osig->pin(0));
auto osig_vec = new netvector_t(data_type, expr_width() - 1, 0);
osig = new NetNet(scope, scope->local_symbol(), NetNet::IMPLICIT,
osig_vec);
osig->set_line(*this);
osig->local_flag(true);
connect(rep->pin(0), osig->pin(0));
}
delete[]tmp;
return osig;
}
NetNet *NetEArrayPattern::synthesize(Design *des, NetScope *scope, NetExpr *root)
{
const netsarray_t *array_type = dynamic_cast<const netsarray_t *>(net_type());
ivl_assert(*this, array_type);
if (items_.empty())
return nullptr;
bool failed = false;
std::unique_ptr<NetNet*[]> nets(new NetNet*[items_.size()]);
for (unsigned int idx = 0; idx < items_.size(); idx++) {
if (!items_[idx]) {
failed = true;
continue;
}
nets[idx] = items_[idx]->synthesize(des, scope, root);
if (!nets[idx])
failed = true;
}
if (failed)
return nullptr;
// Infer which dimension we are in for nested assignment patterns based on
// the dimensions of the element.
size_t dim = nets[0]->unpacked_dims().size() + 1;
const auto &type_dims = array_type->static_dimensions();
if (dim > type_dims.size())
return nullptr;
netranges_t dims(type_dims.end() - dim, type_dims.end());
if (dims.front().width() != items_.size())
return nullptr;
perm_string path = scope->local_symbol();
NetNet *osig = new NetNet(scope, path, NetNet::IMPLICIT, dims,
array_type->element_type());
osig->set_line(*this);
osig->local_flag(true);
unsigned int opin = 0;
for (unsigned int idx = 0; idx < items_.size(); idx++) {
for (unsigned int net_pin = 0; net_pin < nets[idx]->pin_count(); net_pin++)
connect(osig->pin(opin++), nets[idx]->pin(net_pin));
}
return osig;
}
NetNet* NetEConst::synthesize(Design*des, NetScope*scope, NetExpr*)
{
perm_string path = scope->local_symbol();
unsigned width=expr_width();
if (width == 0) {
cerr << get_fileline() << ": internal error: "
<< "Found a zero width constant!" << endl;
return 0;
}
netvector_t*osig_vec = new netvector_t(expr_type(), width-1, 0);
osig_vec->set_signed(has_sign());
NetNet*osig = new NetNet(scope, path, NetNet::IMPLICIT, osig_vec);
osig->set_line(*this);
osig->local_flag(true);
NetConst*con = new NetConst(scope, scope->local_symbol(), value());
con->set_line(*this);
des->add_node(con);
connect(osig->pin(0), con->pin(0));
return osig;
}
/*
* Create a NetLiteral object to represent real valued constants.
*/
NetNet* NetECReal::synthesize(Design*des, NetScope*scope, NetExpr*)
{
perm_string path = scope->local_symbol();
netvector_t*osig_vec = new netvector_t(IVL_VT_REAL);
osig_vec->set_signed(has_sign());
NetNet*osig = new NetNet(scope, path, NetNet::WIRE, osig_vec);
osig->set_line(*this);
osig->local_flag(true);
NetLiteral*con = new NetLiteral(scope, scope->local_symbol(), value_);
con->set_line(*this);
des->add_node(con);
connect(osig->pin(0), con->pin(0));
return osig;
}
/*
* The bitwise unary logic operator (there is only one) is turned
* into discrete gates just as easily as the binary ones above.
*/
NetNet* NetEUBits::synthesize(Design*des, NetScope*scope, NetExpr*root)
{
NetNet*isig = expr_->synthesize(des, scope, root);
if (isig == 0) return 0;
if (isig->data_type() == IVL_VT_REAL) {
cerr << get_fileline() << ": error: bit-wise negation ("
<< human_readable_op(op_)
<< ") may not have a REAL operand." << endl;
des->errors += 1;
return 0;
}
unsigned width = isig->vector_width();
netvector_t*osig_vec = new netvector_t(expr_type(), width-1, 0);
NetNet*osig = new NetNet(scope, scope->local_symbol(),
NetNet::IMPLICIT, osig_vec);
osig->set_line(*this);
osig->local_flag(true);
perm_string oname = scope->local_symbol();
NetLogic*gate;
switch (op()) {
case '~':
gate = new NetLogic(scope, oname, 2, NetLogic::NOT, width, true);
gate->set_line(*this);
break;
default:
gate = NULL;
ivl_assert(*this, 0);
}
connect(osig->pin(0), gate->pin(0));
connect(isig->pin(0), gate->pin(1));
des->add_node(gate);
return osig;
}
NetNet* NetEUnary::synthesize(Design*des, NetScope*scope, NetExpr*root)
{
if (op_ == '+')
return expr_->synthesize(des, scope, root);