-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmy_data_functions.R
196 lines (126 loc) · 5.09 KB
/
my_data_functions.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# writing function for importing multiple files
library(tidyverse)
library(lubridate)
library(here)
library(janitor)
# Importing Data ----------------------------------------------------------
# Get list of files (remember to rename them with Theatre names and remove the time stamp):
list_of_files <- list.files(path = here("data"),
pattern = "\\.txt$",
full.names = TRUE)
new_list_of_files <- list.files(path = here("data", "2021_07_26"),
pattern = "\\.txt$",
full.names = TRUE) # enter new folder with date
# These are the basic elements of the function
# file_names <- file_list %>%
# map_chr(~ str_sub(.x, start = 92, end = 95))
#
# data.list <- map(file_list, read.csv)
#
#
# names(data.list) <- file_names
data_import <- function(file_list) {
df_names <- file_list %>%
map_chr(~ str_sub(.x, start = 92, end = 95))
data_list <- map(file_list, read.csv)
# data_list <- map(data_list, clean_names)
names(data_list) <- df_names
return(data_list)
}
new_data_import <- function(file_list) {
df_names <- file_list %>%
map_chr(~ str_sub(.x, start = 103, end = 106))
data_list <- map(file_list, read.csv)
# data_list <- map(data_list, clean_names)
names(data_list) <- df_names
return(data_list)
}
# Merging Data ------------------------------------------------------------
rbind_df <- function(old, new) {
new <- new %>%
filter(!date_time_2 %in% old$date_time_2)
merged_df <- rbind(old, new)
return(merged_df)
}
# Sorting and Analying Data -----------------------------------------------
data_summarise <- function(df) {
df <- clean_names(df)
case_summary <- c("Case duration",
"Consumption O2",
"Consumption Air",
"Consumption N2O",
"Consumption Sev",
"Uptake Sev")
data_list <- df %>%
mutate(date_time.2 = dmy_hms(date_time),
.before = "label") %>%
filter(label %in% case_summary) %>%
select(c("label", "current_value", "date_time.2")) %>%
pivot_wider(names_from = "label",
values_from = "current_value") %>%
clean_names() %>%
mutate(case_duration.2 = lubridate::hm(case_duration)) %>%
mutate(case_duration_min = as.period(case_duration.2, unit = "minutes")) %>%
filter(case_duration_min$minute > 30) %>%
mutate_if(is.character, as.numeric)
data_list$case_duration_min <- as.numeric(data_list$case_duration_min$minute)
return(data_list)
}
basic_calculations <- function(df) {
df <- df %>%
mutate(consumption_n2o = ifelse(is.na(consumption_n2o), 0, consumption_n2o),
consumption_air = ifelse(is.na(consumption_air), 0, consumption_air),
consumption_sevo = ifelse(is.na(consumption_sev), 0, consumption_sev)
) %>%
mutate(total_consumption = consumption_o2 + consumption_air) %>%
mutate(FGF = total_consumption/case_duration_min) %>%
mutate(TIVA = ifelse(is.na(consumption_sev), TRUE, FALSE)) %>%
mutate(sevo_efficiency = uptake_sev/consumption_sev) %>%
mutate(year_m = cut(date_time_2, breaks = "month")) %>%
mutate(year_m = ymd(year_m)) %>%
mutate(sevo_co2e = consumption_sev/1000*1.522*130,
sevo_co2t = sevo_co2e/1000,
n2o_co2e = consumption_n2o*0.00183*298) %>%
mutate(total_co2 = sevo_co2e + n2o_co2e) %>%
mutate(miles_driven_per_case = total_co2*1000/277 * 0.62137) %>%
mutate(sevo_cost_per_case = consumption_sevo*0.192) %>%
mutate(sevo_cost_per_case_min = sevo_cost_per_case/case_duration_min)
return(df)
}
monthly_summary <- function(df) {
df_monthly <- df %>%
group_by(year_m, TIVA) %>%
mutate(monthly_minutes = sum(case_duration_min, na.rm = T)) %>%
mutate(monthly_sevo_co2e = consumption_sev/1000*1.522*130,
monthly_sevo_co2t = sevo_co2e/1000,
monthly_n2o_co2e = consumption_n2o*0.00183*298) %>%
mutate(monthly_mean_FGF = mean(FGF, na.rm = T)) %>%
mutate(sevo_co2e_per_min = monthly_sevo_co2e/monthly_minutes,
n2o_co2e_per_min = monthly_n2o_co2e/monthly_minutes)
return(df_monthly)
}
# Tring to use Nick's functions on flows:
# Separating the list for the app in various forms ------------------------
extract_df_from_list <- function(list_of_dfs, envir = .GlobalEnv) {
for (i in 1:length(list_of_dfs)) {
assign(names(list_of_dfs[i]),
list_of_dfs[[i]],
envir = envir)
}
}
new_extract_df_from_list <- function(list_of_dfs, envir = .GlobalEnv) {
for (i in 1:length(list_of_dfs)) {
paste0("new_", assign(names(list_of_dfs[i]),
list_of_dfs[[i]],
envir = envir))
}
}
writeRDA_summaries <- function(list_of_dfs, envir = .GlobalEnv){
for (i in 1:length(list_of_dfs)) {
assign(names(list_of_dfs[i]),
write_rds(list_of_dfs[[i]],
file = paste0(names(list_of_dfs[i]), "_case_summary.RDA")
),
envir = envir)
}
}