-
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathconvert_robot_color.py
executable file
·33 lines (27 loc) · 1 KB
/
convert_robot_color.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import numpy as np
import argparse
import json
from PIL import Image
from os.path import join
from evaluate_robot import colorize_mask,save
from compute_iou import label_mapping
def main(gt_dir='./data/Oxford_Robot_ICCV19/anno', devkit_dir = './dataset/robot_list/'):
"""
Compute IoU given the predicted colorized images and
"""
with open(join(devkit_dir, 'info.json'), 'r') as fp:
info = json.load(fp)
image_path_list = join(devkit_dir, 'val.txt')
label_path_list = join(devkit_dir, 'label.txt')
mapping = np.array(info['label2train'], dtype=np.int)
gt_imgs = open(label_path_list, 'r').read().splitlines()
gt_imgs = [join(gt_dir, x) for x in gt_imgs]
for ind in range(len(gt_imgs)):
label = np.array(Image.open(gt_imgs[ind]))
label = label_mapping(label, mapping)
label = label[:,:,0].astype(np.uint8)
name_tmp = gt_imgs[ind].replace('anno','anno_color')
save([label, name_tmp])
return
if __name__ == "__main__":
main()