-
-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathmodel_efficient.py
607 lines (560 loc) · 25.9 KB
/
model_efficient.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import init
from dgl.nn.pytorch import KNNGraph, EdgeConv, GATConv, GraphConv, SAGEConv, SGConv, GatedGraphConv
from pointnet2_ops.pointnet2_modules import PointnetFPModule, PointnetSAModule, PointnetSAModuleMSG
from pointnet2_ops import pointnet2_utils
from gated_gcn_layer import GatedGCNLayer
from KNNGraphE import KNNGraphE
import numpy as np
from market3d import Market3D
from utils import get_graph_feature, weights_init_kaiming, weights_init_classifier, drop_connect, farthest_point_sample, channel_shuffle, L2norm
from ptflops import get_model_complexity_info
from functools import partial
from torch.utils.data import DataLoader
######################################################################
class GeM(nn.Module):
# change to weighted sum
def __init__(self, dim=1, p=0., eps=1e-6, cg = False, npart=1):
super(GeM, self).__init__()
self.p = nn.Parameter(torch.ones((npart))*p, requires_grad = True) #initial p
self.npart = npart
self.eps = eps
self.dim = dim
self.cg =cg
if self.cg:
self.gating = ContextGating(dim)
def forward(self, x):
if self.cg:
x = x.transpose(1,-1).contiguous()
x = self.gating(x)
x = x.transpose(1,-1).contiguous()
return self.gem(x, p=self.p, eps=self.eps)
def gem(self, x, p=3, eps=1e-6):
s = x.shape
x_max = torch.nn.functional.adaptive_max_pool2d(x, (s[-2], self.npart)).view(-1, self.npart)
x_avg = torch.nn.functional.adaptive_avg_pool2d(x, (s[-2], self.npart)).view(-1, self.npart)
#x_max = x.max(dim=-1, keepdim=False)[0]
#x_avg = x.mean(dim=-1, keepdim=False)
w = torch.sigmoid(self.p)
x = x_max*w + x_avg*(1-w)
if self.npart==1:
x = x.view(s[0:-1])
elif len(s)==3:
x = x.view( (s[0], s[1], self.npart))
elif len(s)==4:
x = x.view( (s[0], s[1], s[2], self.npart))
return x
def __repr__(self):
if self.cg:
return self.__class__.__name__ + '(' + 'p=' + '{:.2f}'.format(self.p[0]) + ', ' + 'cg=' + str(self.dim) + ')'
if self.npart>1:
s = ''
for i in range(self.npart):
s += self.__class__.__name__ + '(' + 'p=' + '{:.2f}'.format(self.p[i]) + '),'
return s
return self.__class__.__name__ + '(' + 'p=' + '{:.2f}'.format(self.p[0]) + ')'
class ContextGating(nn.Module):
def __init__(self, input_size):
super(ContextGating, self).__init__()
self.linear = nn.Sequential(*[nn.Linear(input_size, input_size//16, bias=True),
nn.ReLU(),
nn.Linear(input_size//16, input_size, bias=True)])
self.linear.apply(weights_init_kaiming)
def forward(self, input):
s = input.shape
x = input.view(-1, s[-1])
wx = self.linear(x)
# print(wx.size())
gates = torch.sigmoid(wx)
x = gates*x
x = x.view(s)
return x
class IBN1d(nn.Module):
r"""Instance-Batch Normalization layer from
`"Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net"
<https://arxiv.org/pdf/1807.09441.pdf>`
Args:
planes (int): Number of channels for the input tensor
ratio (float): Ratio of instance normalization in the IBN layer
"""
def __init__(self, planes, ratio=0.5):
super(IBN1d, self).__init__()
self.half = int(planes * ratio)
self.IN = nn.InstanceNorm1d(self.half, affine=True)
self.BN = nn.BatchNorm1d(planes - self.half)
self.IN.apply(weights_init_kaiming)
self.BN.apply(weights_init_kaiming)
def forward(self, x):
split = torch.split(x, self.half, 1)
out1 = self.IN(split[0].contiguous())
out2 = self.BN(split[1].contiguous())
out = torch.cat((out1, out2), 1)
return out
class IBN2d(nn.Module):
r"""Instance-Batch Normalization layer from
`"Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net"
<https://arxiv.org/pdf/1807.09441.pdf>`
Args:
planes (int): Number of channels for the input tensor
ratio (float): Ratio of instance normalization in the IBN layer
"""
def __init__(self, planes, ratio=0.5):
super(IBN2d, self).__init__()
self.half = int(planes * ratio)
self.IN = nn.InstanceNorm2d(self.half, affine=True)
self.BN = nn.BatchNorm2d(planes - self.half)
self.IN.apply(weights_init_kaiming)
self.BN.apply(weights_init_kaiming)
def forward(self, x):
split = torch.split(x, self.half, 1)
out1 = self.IN(split[0].contiguous())
out2 = self.BN(split[1].contiguous())
out = torch.cat((out1, out2), 1)
return out
class Conv_ASPP(nn.Module):
def __init__(self, inplanes, outplanes, ASPP_type=1):
super(Conv_ASPP, self).__init__()
self.ASPP_type = ASPP_type
if self.ASPP_type ==1:
self.conv1 = nn.Sequential(*[nn.Conv2d( inplanes, outplanes - outplanes//2, kernel_size=1,bias = True ),
nn.BatchNorm2d(outplanes - outplanes//2), GeM(outplanes - outplanes//2) ])
self.conv2 = nn.Sequential(*[nn.Conv2d( inplanes, outplanes//2, kernel_size=1, bias = True ),
nn.BatchNorm2d(outplanes//2), GeM(outplanes//2)])
elif self.ASPP_type ==2:
self.conv1 = nn.Sequential(*[nn.Conv2d( inplanes, outplanes - 2*outplanes//3, kernel_size=1,bias = True ),
nn.BatchNorm2d(outplanes - 2*outplanes//3), GeM(outplanes - 2*outplanes//3) ])
self.conv2 = nn.Sequential(*[nn.Conv2d( inplanes, outplanes//3, kernel_size=1, bias = True ),
nn.BatchNorm2d(outplanes//3), GeM(outplanes//3)])
self.conv3 = nn.Sequential(*[nn.Conv2d( inplanes, outplanes//3, kernel_size=1,bias = True ),
nn.BatchNorm2d(outplanes//3), GeM(outplanes//3) ])
def forward(self, x):
B, C, N, neighbor = x.shape
if self.ASPP_type ==1:
x_half = x[:,:,:,0:neighbor//2].contiguous()
out1 = self.conv1(x)
out2 = self.conv2(x_half)
out = torch.cat((out1, out2), 1)
elif self.ASPP_type ==2:
x_2 = x[:,:,:,0:neighbor//3].contiguous()
x_3 = x[:,:,:,0:2*neighbor//3].contiguous()
out1 = self.conv1(x)
out2 = self.conv2(x_2)
out3 = self.conv2(x_3)
out = torch.cat((out1, out2, out3), 1)
return out
class EdgeConv_Light(EdgeConv):
def __init__(self, in_feat, out_feat, batch_norm=False):
super().__init__(in_feat, out_feat, batch_norm)
self.theta = nn.Linear(in_feat, out_feat, bias = False)
self.phi = nn.Linear(in_feat, out_feat, bias = False)
class ModelE(nn.Module):
def __init__(self, k, feature_dims, emb_dims, output_classes, init_points = 512, input_dims=3,
dropout_prob=0.5, npart=1, id_skip=False, drop_connect_rate=0, res_scale = 1.0,
light = False, bias = False, cluster='xyz', conv='EdgeConv', use_xyz=True,
use_se = True, graph_jitter = False, pre_act = False, norm = 'bn', stride=2,
layer_drop = 0, num_conv=1, temp = False, gem=False, cg=False, ASPP=0):
super(ModelE, self).__init__()
self.npart = npart
self.norm = norm
self.graph_jitter = graph_jitter
self.res_scale = res_scale
self.return_f = temp
self.id_skip = id_skip
self.drop_connect_rate = drop_connect_rate
self.nng = KNNGraphE(k) # with random neighbor
self.conv = nn.ModuleList()
self.ASPP = ASPP
self.cg = cg
if ASPP>0:
norm = 'none'
self.conv_s1 = nn.ModuleList()
self.conv_s2 = nn.ModuleList()
self.gem = gem
if gem:
self.agg = nn.ModuleList()
self.bn = nn.ModuleList()
self.sa = nn.ModuleList()
if id_skip:
self.p_w = []
self.cluster = cluster
self.feature_dims = feature_dims
self.conv_type = conv
self.init_points = init_points
self.k = k
self.light = light
self.pre_act = pre_act
self.num_conv = num_conv
#self.proj_in = nn.Linear(input_dims, input_dims)
self.num_layers = len(feature_dims)
npoint = init_points
last_npoint = -1
for i in range(self.num_layers):
if k==1:
self.conv.append(nn.Conv2d(feature_dims[i-1] if i > 0 else input_dims,
feature_dims[i] , kernel_size=1,
bias = True))
self.bn.append( nn.BatchNorm1d( feature_dims[i] ))
elif conv == 'EdgeConv':
group_num = 2 if light and i>0 else 1
for j in range(self.num_conv):
if j==0:
self.conv.append( nn.Conv2d(
feature_dims[i - 1]*2 if i > 0 else input_dims*2,
feature_dims[i],
kernel_size=1,
groups = group_num,
bias = True ) if self.ASPP==0 else Conv_ASPP(
feature_dims[i - 1]*2 if i > 0 else input_dims*2,
feature_dims[i], self.ASPP) )
else:
self.conv.append( nn.Conv2d(
feature_dims[i]*2,
feature_dims[i],
kernel_size=1,
groups = group_num,
bias = True ) if self.ASPP==0 else Conv_ASPP(
feature_dims[i]*2,
feature_dims[i], self.ASPP))
if self.gem and self.ASPP==0:
self.agg.append(GeM(dim=feature_dims[i], cg = self.cg))
if i==0 and j==0 and pre_act:
norm_dim = input_dims
else:
norm_dim = feature_dims[i-1] if pre_act and j==0 else feature_dims[i]
if norm == 'ln':
if layer_drop>0:
self.bn.append(nn.Sequential(
nn.LayerNorm(norm_dim),
nn.Dropout(layer_drop)) )
else:
self.bn.append(
nn.LayerNorm(norm_dim))
elif norm == 'ibn':
if layer_drop>0:
self.bn.append(nn.Sequential(
IBN1d(norm_dim),
nn.Dropout(layer_drop)) )
else:
self.bn.append(
IBN1d(norm_dim))
elif norm == 'ibn2':
if layer_drop>0:
self.bn.append(nn.Sequential(
IBN2d(norm_dim),
nn.Dropout(layer_drop)) )
else:
self.bn.append(
IBN2d(norm_dim))
elif norm == 'bn':
if layer_drop>0:
self.bn.append(nn.Sequential(
nn.BatchNorm1d(norm_dim),
nn.Dropout(layer_drop)) )
else:
self.bn.append(
nn.BatchNorm1d(norm_dim))
elif norm == 'bn2':
if layer_drop>0:
self.bn.append(nn.Sequential(
nn.BatchNorm2d(norm_dim),
nn.Dropout(layer_drop)) )
else:
self.bn.append(
nn.BatchNorm2d(norm_dim))
elif norm == 'none':
self.bn.append(nn.Sequential())
else:
print('!!! UNknown Normalization Layer')
if i>0 and feature_dims[i]>feature_dims[i-1]:
npoint = npoint//stride
if id_skip:
self.p_w = nn.Parameter(torch.ones((self.num_layers))*0, requires_grad = True)
if npoint != last_npoint:
if id_skip:
self.conv_s2.append( nn.Sequential(*[
nn.Linear(feature_dims[i-1] if i > 0 else input_dims,
feature_dims[i]), nn.LeakyReLU(0.2)]))
self.sa.append(PointnetSAModule(
npoint=npoint,
radius=0.2,
nsample=64,
mlp=[feature_dims[i], feature_dims[i], feature_dims[i]],
fuse = 'add',
norml = 'bn',
activation = 'relu',
use_se = use_se,
use_xyz = use_xyz,
use_neighbor = False,
light = False
))
last_npoint = npoint
#if id_skip:
# self.conv_s1.append( nn.Linear(feature_dims[i], feature_dims[i] ))
self.embs = nn.ModuleList()
self.bn_embs = nn.ModuleList()
self.dropouts = nn.ModuleList()
if self.cg:
self.gating = ContextGating(feature_dims[-1])
self.gating.apply(weights_init_kaiming)
if self.npart == 1:
self.embs.append(nn.Linear(
# * 2 because of concatenation of max- and mean-pooling
feature_dims[-1]*2, emb_dims[0], bias=bias))
self.bn_embs.append(nn.BatchNorm1d(emb_dims[0]))
self.dropouts.append(nn.Dropout(dropout_prob, inplace=True))
self.proj_output = nn.Linear(emb_dims[0], output_classes)
self.proj_output.apply(weights_init_classifier)
else:
self.globpool = GeM()
self.partpool = GeM(npart = self.npart)
self.proj_outputs = nn.ModuleList()
for i in range(0, self.npart+1): # one more for global
self.embs.append(nn.Linear(feature_dims[-1], 512, bias=bias))
self.bn_embs.append(nn.BatchNorm1d(512))
self.dropouts.append(nn.Dropout(dropout_prob, inplace=True))
self.proj_outputs.append(nn.Linear(512, output_classes))
self.proj_outputs.apply(weights_init_classifier)
# initial
#self.proj_in.apply(weights_init_kaiming)
self.conv.apply(weights_init_kaiming)
self.conv_s1.apply(weights_init_kaiming)
self.conv_s2.apply(weights_init_kaiming)
weights_init_kaiming2 = lambda x:weights_init_kaiming(x,L=self.num_layers)
self.sa.apply(weights_init_kaiming2)
#self.proj.apply(weights_init_kaiming)
self.embs.apply(weights_init_kaiming)
self.bn.apply(weights_init_kaiming)
self.bn_embs.apply(weights_init_kaiming)
self.npart = npart
def forward(self, xyz, rgb, istrain=False):
#xyz_copy = xyz.clone()
#rgb_copy = rgb.clone()
batch_size, n_points, _ = xyz.shape
part_length = n_points//self.npart
last_point = -1
last_feature_dim = -1
#h = self.proj_in(rgb)
h = rgb
s2_count = 0
for i in range(self.num_layers):
h_input = h.clone()
xyz_input = xyz.clone()
batch_size, n_points, feature_dim = h.shape
######## Build Graph #########
last_point = n_points
######### Dynamic Graph Conv #########
xyz = xyz.transpose(1, 2).contiguous()
#print(h.shape) # batchsize x point_number x feature_dim
h = h.transpose(1, 2).contiguous()
for j in range(self.num_conv):
index = self.num_conv*i+j
####### BN + ReLU #####
if self.pre_act == True:
if self.norm == 'ln':
h = h.transpose(1, 2).contiguous()
h = self.bn[index](h)
h = h.transpose(1, 2).contiguous()
else:
h = self.bn[index](h)
h = F.leaky_relu(h, 0.2)
####### Graph Feature ###########
if self.k==1 and j==0:
h = h.unsqueeze(-1)
else:
if i == self.num_layers-1:
if self.cluster == 'xyz':
h = get_graph_feature(xyz, h, k=self.k)
elif self.cluster == 'xyzrgb' or self.cluster == 'allxyzrgb':
h = get_graph_feature( torch.cat( (xyz, h), 1), h, k=self.k)
else:
# Common Layers
if self.cluster == 'allxyzrgb':
h = get_graph_feature( torch.cat( (xyz, h), 1), h, k=self.k)
else:
h = get_graph_feature(xyz, h, k=self.k)
####### Conv ##########
if self.light == True and i >0:
#shuffle after the first layer
h = channel_shuffle(h, 2)
h = self.conv[index](h)
else:
h = self.conv[index](h)
##### BN2d before Aggregation ###
if self.pre_act == False:
if self.norm =='bn2' or self.norm =='ibn2':
h = self.bn[index](h)
###### Aggregation ####
if self.ASPP==0:
if self.gem:
h = self.agg[index](h)
else:
h = h.max(dim=-1, keepdim=False)[0]
####### BN + ReLU #####
if self.pre_act == False:
if self.norm == 'ln':
h = h.transpose(1, 2).contiguous()
h = self.bn[index](h)
h = h.transpose(1, 2).contiguous()
elif self.norm=="bn" or self.norm=="ibn":
h = self.bn[index](h)
h = F.leaky_relu(h, 0.2)
h = h.transpose(1, 2).contiguous()
#print(h.shape) # batchsize x point_number x feature_dim
batch_size, n_points, feature_dim = h.shape
if self.id_skip:
p_w = self.p_w[i]
res_w = torch.sigmoid(p_w)
######### Residual Before Downsampling#############
if self.id_skip==1:
if istrain and self.drop_connect_rate>0:
h = drop_connect(h, p=self.drop_connect_rate, training=istrain)
if feature_dim != last_feature_dim:
h_input = self.conv_s2[s2_count](h_input)
h = res_w*h_input + (1-res_w)*self.res_scale * h
######### PointNet++ MSG ########
if feature_dim != last_feature_dim:
h = h.transpose(1, 2).contiguous()
xyz, h = self.sa[s2_count](xyz_input, h)
h = h.transpose(1, 2).contiguous()
if self.id_skip == 2:
h_input = pointnet2_utils.gather_operation(
h_input.transpose(1, 2).contiguous(),
pointnet2_utils.furthest_point_sample(xyz_input, h.shape[1] )
).transpose(1, 2).contiguous()
else:
xyz = xyz.transpose(1, 2).contiguous()
######### Residual After Downsampling (Paper) #############
if self.id_skip==2:
if istrain and self.drop_connect_rate>0:
h = drop_connect(h, p=self.drop_connect_rate, training=istrain)
if feature_dim != last_feature_dim:
h_input = self.conv_s2[s2_count](h_input)
h = res_w*h_input + (1-res_w)*self.res_scale * h
if feature_dim != last_feature_dim:
s2_count +=1
last_feature_dim = feature_dim
#print(xyz.shape, h.shape)
if self.cg:
h = self.gating(h)
if self.npart==1:
# Pooling
h_max, _ = torch.max(h, 1)
h_avg = torch.mean(h, 1)
#hs.append(h_max)
#hs.append(h_avg)
h = torch.cat([h_max, h_avg], 1)
h = self.embs[0](h)
hf = self.bn_embs[0](h)
h = self.dropouts[0](hf)
h = self.proj_output(h)
else:
# original loss
h0 = self.globpool(h.transpose(1, 2))
h0 = self.embs[-1](h0)
hf0 = self.bn_embs[-1](h0)
h0 = self.dropouts[-1](hf0)
h0 = self.proj_outputs[-1](h0)
# Sort
batch_size, n_points, _ = h.shape
y_bias = torch.argsort(xyz[:, :, 1], dim = 1) .view(batch_size * n_points)
h = h.view(batch_size * n_points, -1)
y_index = y_bias + torch.arange(0, n_points*batch_size,device='cuda')//n_points * n_points
h = h[y_index, :].view(batch_size, n_points, -1)
h = h.transpose(1, 2)
# Part Pooling
h = self.partpool(h)
hf = [L2norm(hf0)]
hs = [h0]
for i in range(0, self.npart):
part_h = h[:,:,i]
part_h = self.embs[i](part_h)
part_hf = self.bn_embs[i](part_h)
part_h = self.dropouts[i](part_hf)
part_h = self.proj_outputs[i](part_h)
hs.append(part_h)
hf.append(L2norm(part_hf))
h = hs
#hf = torch.cat(hf, 1)
if self.return_f:
return [h, hf]
return h
class ModelE_dense(ModelE):
def __init__(self, k, feature_dims, emb_dims, output_classes, init_points = 512, input_dims=3,
dropout_prob=0.5, npart=1, id_skip=False, drop_connect_rate=0, res_scale=1.0,
light=False, bias = False, cluster='xyz', conv='EdgeConv', use_xyz=True,
use_se=True, graph_jitter = False, pre_act = False, norm = 'bn', stride=2,
layer_drop = 0, num_conv=1, temp = False, gem=False, cg=False, ASPP=0):
super().__init__(k, feature_dims, emb_dims, output_classes, init_points, input_dims,
dropout_prob, npart, id_skip, drop_connect_rate, res_scale,
light, bias, cluster, conv, use_xyz, use_se, graph_jitter, pre_act, norm, stride,
layer_drop, num_conv, temp, gem, cg, ASPP)
self.sa = nn.ModuleList()
npoint = init_points
if temp:
self.logit_scale = nn.Parameter(torch.ones(()), requires_grad = True)
last_npoint = -1
for i in range(len(feature_dims)):
if i>0 and feature_dims[i]>feature_dims[i-1]:
npoint = npoint//stride
if npoint != last_npoint:
self.sa.append( PointnetSAModuleMSG(
npoint=npoint,
radii = [0.1, 0.2, 0.4],
nsamples = [8, 16, 32],
mlps=[
[feature_dims[i], feature_dims[i]//2, feature_dims[i]],
[feature_dims[i], feature_dims[i]//2, feature_dims[i]],
[feature_dims[i], feature_dims[i]//2, feature_dims[i]],
],
fuse = 'add', # fuse = 'add'
norml = 'bn',
activation = 'relu',
use_se = use_se,
use_xyz = use_xyz,
use_neighbor = False,
light = False
)
)
last_npoint = npoint
# since add 3 branch
weights_init_kaiming2 = lambda x:weights_init_kaiming(x, L=self.num_layers)
self.sa.apply(weights_init_kaiming2)
if __name__ == '__main__':
# Here I left a simple forward function.
# Test the model, before you train it.
#torch.backends.cudnn.enabled = False
net = ModelE_dense( 20, [48, 96, 192,384], [512],
output_classes=751, cluster='xyzrgb', init_points = 768,
input_dims=3, dropout_prob=0.5, npart= 4, id_skip=0,
pre_act = False, norm = 'bn2', layer_drop=0.1, num_conv=1, light=False,
temp=False, gem=True, cg=True, ASPP=0)
# net = Model_dense( 20, [40,40,80,80,192,192,320,320, 512], [512], output_classes=751,
# init_points = 512, input_dims=3, dropout_prob=0.5, npart= 1, id_skip=True,
# light=True, cluster='xyz', conv='SAGEConv', use_xyz=False)
xyz = torch.FloatTensor(np.random.normal(size=(4, 6890, 3))).cuda()
rgb = torch.FloatTensor(4, 6890, 3).cuda()
net = net.cuda()
print(net)
net.proj_output = nn.Sequential()
model_parameters = filter(lambda p: p.requires_grad, net.parameters())
params = sum([np.prod(p.size()) for p in model_parameters])
print('Number of parameters: %.2f M'% (params/1e6) )
output = net(xyz, rgb)
market_data = Market3D('./2DMarket', flip=True, slim=0.5, bg=True)
CustomDataLoader = partial(
DataLoader,
num_workers=0,
batch_size=4,
shuffle=True,
drop_last=True)
query_loader = CustomDataLoader(market_data.query())
batch0,label0 = next(iter(query_loader))
batch0 = batch0[0].unsqueeze(0)
print(batch0.shape)
macs, params = get_model_complexity_info(net, batch0.cuda(), ((round(6890*0.5), 3) ), as_strings=True, print_per_layer_stat=False, verbose=True)
#print(macs)
print('{:<30} {:<8}'.format('Computational complexity: ', macs))
print('{:<30} {:<8}'.format('Number of parameters: ', params))
#print(output.shape)