-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathapp.py
264 lines (211 loc) · 11.5 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import streamlit as st
from openai import OpenAI
import os
from io import StringIO
import time
import tempfile
import io
from extractor import initial_loading
from extractor import update_model_representation, get_skipJSON, feed_skipJSON
from utils import get_agents
from utils import OptiChat_workflow_exp
from pyomo.opt import TerminationCondition
import json
def string_generator(long_string, chunk_size=50):
for i in range(0, len(long_string), chunk_size):
yield long_string[i:i+chunk_size]
time.sleep(0.1) # Optionally add a small delay between each yield
client = OpenAI(api_key=os.environ["OPENAI_API_KEY"])
st.session_state['client'] = client
st.session_state['temperature'] = 0.1 # by default
st.session_state['json_mode'] = True # by default
st.session_state['illustration_stream'] = True # by default
st.session_state['inference_stream'] = True # by default
st.session_state['explanation_stream'] = True # by default
st.session_state['internal_experiment'] = False # by default
st.session_state['external_experiment'] = False # by default
st.set_page_config(layout='wide')
st.title("OptiChat: Talk to your Optimization Model")
gpt_model = st.sidebar.selectbox(label="GPT-Model", options=["gpt-4-turbo-preview", "gpt-4-turbo", "gpt-4-1106-preview", "gpt-4", "gpt-3.5-turbo", "gpt-3.5-turbo-16k"], )
st.session_state["gpt_model"] = gpt_model
# Set a default model
if "gpt_model" not in st.session_state:
st.session_state["gpt_model"] = "gpt-4-turbo-preview"
if "models_dict" not in st.session_state:
st.session_state["models_dict"] = {"model_representation": {}}
if "code" not in st.session_state:
st.session_state["code"] = ""
st.sidebar.subheader("Load Pyomo File")
uploaded_file = st.sidebar.file_uploader("Upload Model", type=["py"])
uploaded_json = st.sidebar.file_uploader("Upload JSON", type=["json"])
st.session_state['py_path'] = None
st.session_state['fn_names'] = ["feasibility_restoration",
"sensitivity_analysis",
"components_retrival",
"evaluate_modification",
"external_tools"]
interpreter, explainer, engineer, coordinator = get_agents(st.session_state.fn_names,
st.session_state.client,
st.session_state.gpt_model)
st.session_state['Interpreter'] = interpreter
st.session_state['Explainer'] = explainer
st.session_state['Engineer'] = engineer
st.session_state['Coordinator'] = coordinator
if not st.session_state.get("messages"):
st.session_state["messages"] = []
if not st.session_state.get("team_conversation"):
st.session_state["team_conversation"] = []
if not st.session_state.get("chat_history"):
st.session_state["chat_history"] = []
if not st.session_state.get("detailed_chat_history"):
st.session_state["detailed_chat_history"] = []
def process():
if uploaded_file is None:
st.error("Please upload your model first.")
return
models_dict, code = initial_loading(uploaded_file)
with st.chat_message("user"):
st.markdown("I have uploaded a Pyomo model.")
st.session_state.messages.append({"role": "user", "content": "I have uploaded a Pyomo model."})
# interpret the model components
models_dict, cnt, completion = st.session_state.Interpreter.generate_interpretation_exp(st.session_state,
models_dict, code)
st.session_state['models_dict'] = models_dict
st.session_state['code'] = code
# update model representation with component descriptions
update_model_representation(st.session_state.models_dict)
# illustrate the model
illustration_stream = st.session_state.Interpreter.generate_illustration_exp(st.session_state,
models_dict["model_representation"])
with st.chat_message("assistant"):
illustration = st.write_stream(illustration_stream)
# update model representation with model description
st.session_state.models_dict['model_1']['model description'] = illustration
update_model_representation(st.session_state.models_dict)
# if the model is infeasible, generate inference
if st.session_state.models_dict['model_1']['model status'] in [TerminationCondition.infeasible,
TerminationCondition.infeasibleOrUnbounded]:
inference_stream = st.session_state.Interpreter.generate_inference_exp(st.session_state,
st.session_state.models_dict["model_representation"])
with st.chat_message("assistant"):
inference = st.write_stream(inference_stream)
# update model representation with inference description
st.session_state.models_dict['model_1']['model description'] = illustration + '\n' + inference
update_model_representation(st.session_state.models_dict)
# append model representation to messages
st.session_state.messages.append({"role": "assistant",
"content": st.session_state.models_dict["model_representation"]["model description"]})
# append detailed chat history
st.session_state.chat_history.append("user: I have uploaded a Pyomo model.")
st.session_state.chat_history.append("assistant: " +
st.session_state.models_dict["model_representation"]["model description"])
st.session_state.detailed_chat_history.append("user: I have uploaded a Pyomo model.")
st.session_state.detailed_chat_history.append("assistant: " +
st.session_state.models_dict["model_representation"]["model description"])
# save model_description and description of every component
if not os.path.exists("logs/model_json"):
os.makedirs("logs/model_json")
if not os.path.exists("logs/code_draft"):
os.makedirs("logs/code_draft")
if not os.path.exists("logs/ilps"):
os.makedirs("logs/ilps")
json2save = get_skipJSON(st.session_state.models_dict["model_representation"])
with open(f"logs/model_json/{os.path.splitext(uploaded_file.name)[0]}.json", "w") as f:
json.dump(json2save, f)
def load_json():
if uploaded_file is None:
st.error("Please upload your model first.")
return
if uploaded_json is None:
st.error("Please upload your json file first.")
return
models_dict, code = initial_loading(uploaded_file)
with st.chat_message("user"):
st.markdown("I have uploaded a Pyomo model.")
st.session_state.messages.append({"role": "user", "content": "I have uploaded a Pyomo model."})
skipJSON = json.load(uploaded_json)
models_dict = feed_skipJSON(skipJSON, models_dict)
st.session_state["models_dict"] = models_dict
st.session_state['code'] = code
# update model representation with component and model descriptions
update_model_representation(st.session_state.models_dict)
time.sleep(8)
stream = string_generator(skipJSON["model description"])
with st.chat_message("assistant"):
st.write_stream(stream)
# append model representation to messages
st.session_state.messages.append({"role": "assistant",
"content": st.session_state.models_dict["model_representation"][
"model description"]})
# append detailed chat history
st.session_state.chat_history.append("user: I have uploaded a Pyomo model.")
st.session_state.chat_history.append("assistant: " +
st.session_state.models_dict["model_representation"]["model description"])
st.session_state.detailed_chat_history.append("user: I have uploaded a Pyomo model.")
st.session_state.detailed_chat_history.append("assistant: " +
st.session_state.models_dict["model_representation"][
"model description"])
chat_history_texts = '\n\n'.join(st.session_state.chat_history)
detailed_chat_history_texts = '\n\n'.join(st.session_state.detailed_chat_history)
st.sidebar.button("Process", on_click=process)
st.sidebar.button("Load JSON", on_click=load_json)
show_model_representation = st.sidebar.checkbox("Show Model Representation", False)
model_representation_placeholder = st.empty()
show_code = st.sidebar.checkbox("Show Code", False)
code_placeholder = st.empty()
show_tech_feedback = st.sidebar.checkbox("Show Technical Feedback", False)
tech_feedback_placeholder = st.empty()
st.sidebar.download_button(label="Export Chat History", data=chat_history_texts,
file_name='chat_history.txt', mime='text/plain')
st.sidebar.download_button(label="Export Detailed Chat History", data=detailed_chat_history_texts,
file_name='detailed_chat_history.txt', mime='text/plain')
st.sidebar.markdown("### Status")
status = st.sidebar.empty()
st.sidebar.markdown("### Round")
cur_round = st.sidebar.empty()
st.sidebar.markdown("### Agent")
agent_name = st.sidebar.empty()
st.sidebar.markdown("### Task")
task = st.sidebar.empty()
if show_model_representation:
with model_representation_placeholder.container():
st.json(st.session_state.models_dict["model_representation"])
else:
model_representation_placeholder.empty()
if show_code:
with code_placeholder.container():
st.code(st.session_state.code)
else:
code_placeholder.empty()
if show_tech_feedback:
with tech_feedback_placeholder.container():
for message in st.session_state.team_conversation:
st.write(message['agent_name'] + ': ' + message['agent_response'])
# if message['agent_name'] in ['Programmer', 'Operator', 'Syntax reminder', 'Explainer', 'Coordinator']:
# st.write(message['agent_name'] + ': ' + message['agent_response'])
else:
tech_feedback_placeholder.empty()
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Accept user input
if prompt := st.chat_input("Enter your query here..."):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
updated_messages, team_conversation = OptiChat_workflow_exp(st.session_state,
st.session_state.Coordinator,
st.session_state.Engineer,
st.session_state.Explainer,
st.session_state.messages,
st.session_state.models_dict)
print('OptiChat_out:', updated_messages)
st.session_state.messages = updated_messages
# # update detailed chat history
# st.session_state.chat_history.append("user: " + prompt)
# st.session_state.chat_history.append("assistant: " + OptiChat_out)
# st.session_state.detailed_chat_history.append("user: " + prompt)
# for message in st.session_state.team_conversation:
# st.session_state.detailed_chat_history.append(f"***{message['agent_name']}***: {message['agent_response']}")
# st.session_state.detailed_chat_history.append("assistant: " + OptiChat_out)