-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathtrain_baseline.py
469 lines (388 loc) · 16.6 KB
/
train_baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
#!/usr/bin/env python
# coding: utf-8
import sys
sys.path.insert(0, "./timm-efficientdet-pytorch-small-anchor")
import torch
import os
from datetime import datetime
import time
import random
import cv2
import pandas as pd
import numpy as np
import albumentations as A
import matplotlib.pyplot as plt
from albumentations.pytorch.transforms import ToTensorV2
from sklearn.model_selection import StratifiedKFold
from torch.utils.data import Dataset,DataLoader
from torch.utils.data.sampler import SequentialSampler, RandomSampler
from glob import glob
from apex import amp
from mmcv.runner.checkpoint import load_state_dict
SEED = 42
def seed_everything(seed):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
seed_everything(SEED)
marking = pd.read_csv('data/train.csv')
bboxs = np.stack(marking['bbox'].apply(lambda x: np.fromstring(x[1:-1], sep=',')))
for i, column in enumerate(['x', 'y', 'w', 'h']):
marking[column] = bboxs[:,i]
marking.drop(columns=['bbox'], inplace=True)
skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)
df_folds = marking[['image_id']].copy()
df_folds.loc[:, 'bbox_count'] = 1
df_folds = df_folds.groupby('image_id').count()
df_folds.loc[:, 'source'] = marking[['image_id', 'source']].groupby('image_id').min()['source']
df_folds.loc[:, 'stratify_group'] = np.char.add(
df_folds['source'].values.astype(str),
df_folds['bbox_count'].apply(lambda x: f'_{x // 15}').values.astype(str)
)
df_folds.loc[:, 'fold'] = 0
for fold_number, (train_index, val_index) in enumerate(skf.split(X=df_folds.index, y=df_folds['stratify_group'])):
df_folds.loc[df_folds.iloc[val_index].index, 'fold'] = fold_number
def get_train_transforms():
return A.Compose(
[
A.RandomSizedCrop(min_max_height=(800, 1024), height=1024, width=1024, p=0.5),
A.OneOf([
A.HueSaturationValue(hue_shift_limit=0.2, sat_shift_limit= 0.2,
val_shift_limit=0.2, p=0.9),
A.RandomBrightnessContrast(brightness_limit=0.2,
contrast_limit=0.2, p=0.9),
],p=0.9),
A.ToGray(p=0.01),
A.HorizontalFlip(p=0.5),
A.VerticalFlip(p=0.5),
A.RandomRotate90(p=0.5),
A.Transpose(p=0.5),
A.JpegCompression(quality_lower=85, quality_upper=95, p=0.2),
A.OneOf([
A.Blur(blur_limit=3, p=1.0),
A.MedianBlur(blur_limit=3, p=1.0)
],p=0.1),
A.Resize(height=1024, width=1024, p=1),
A.Cutout(num_holes=8, max_h_size=64, max_w_size=64, fill_value=0, p=0.5),
ToTensorV2(p=1.0),
],
p=1.0,
bbox_params=A.BboxParams(
format='pascal_voc',
min_area=0,
min_visibility=0,
label_fields=['labels']
)
)
def get_valid_transforms():
return A.Compose(
[
A.Resize(height=1024, width=1024, p=1.0),
ToTensorV2(p=1.0),
],
p=1.0,
bbox_params=A.BboxParams(
format='pascal_voc',
min_area=0,
min_visibility=0,
label_fields=['labels']
)
)
TRAIN_ROOT_PATH = 'data/train'
class DatasetRetriever(Dataset):
def __init__(self, marking, image_ids, transforms=None, test=False):
super().__init__()
self.image_ids = image_ids
self.marking = marking
self.transforms = transforms
self.test = test
def __getitem__(self, index: int):
image_id = self.image_ids[index]
if self.test or random.random() > 0.33:
image, boxes = self.load_image_and_boxes(index)
elif random.random() > 0.5:
image, boxes = self.load_cutmix_image_and_boxes(index)
else:
image, boxes = self.load_mixup_image_and_boxes(index)
# there is only one class
labels = torch.ones((boxes.shape[0],), dtype=torch.int64)
target = {}
target['boxes'] = boxes
target['labels'] = labels
target['image_id'] = torch.tensor([index])
if self.transforms:
for i in range(10):
sample = self.transforms(**{
'image': image,
'bboxes': target['boxes'],
'labels': labels
})
if len(sample['bboxes']) > 0:
image = sample['image']
target['boxes'] = torch.stack(tuple(map(torch.tensor, zip(*sample['bboxes'])))).permute(1, 0)
target['boxes'][:,[0,1,2,3]] = target['boxes'][:,[1,0,3,2]] #yxyx: be warning
break
return image, target, image_id
def __len__(self) -> int:
return self.image_ids.shape[0]
def load_image_and_boxes(self, index):
image_id = self.image_ids[index]
image = cv2.imread(f'{TRAIN_ROOT_PATH}/{image_id}.jpg', cv2.IMREAD_COLOR)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB).astype(np.float32)
image /= 255.0
records = self.marking[self.marking['image_id'] == image_id]
boxes = records[['x', 'y', 'w', 'h']].values
boxes[:, 2] = boxes[:, 0] + boxes[:, 2]
boxes[:, 3] = boxes[:, 1] + boxes[:, 3]
return image, boxes
def load_mixup_image_and_boxes(self, index):
image, boxes = self.load_image_and_boxes(index)
r_image, r_boxes = self.load_image_and_boxes(random.randint(0, self.image_ids.shape[0] - 1))
return (image+r_image)/2, np.vstack((boxes, r_boxes)).astype(np.int32)
def load_cutmix_image_and_boxes(self, index, imsize=1024):
"""
This implementation of cutmix author: https://www.kaggle.com/nvnnghia
Refactoring and adaptation: https://www.kaggle.com/shonenkov
"""
w, h = imsize, imsize
s = imsize // 2
xc, yc = [int(random.uniform(imsize * 0.25, imsize * 0.75)) for _ in range(2)] # center x, y
indexes = [index] + [random.randint(0, self.image_ids.shape[0] - 1) for _ in range(3)]
result_image = np.full((imsize, imsize, 3), 1, dtype=np.float32)
result_boxes = []
for i, index in enumerate(indexes):
image, boxes = self.load_image_and_boxes(index)
if i == 0:
x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
elif i == 1: # top right
x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
elif i == 2: # bottom left
x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, max(xc, w), min(y2a - y1a, h)
elif i == 3: # bottom right
x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
result_image[y1a:y2a, x1a:x2a] = image[y1b:y2b, x1b:x2b]
padw = x1a - x1b
padh = y1a - y1b
boxes[:, 0] += padw
boxes[:, 1] += padh
boxes[:, 2] += padw
boxes[:, 3] += padh
result_boxes.append(boxes)
result_boxes = np.concatenate(result_boxes, 0)
np.clip(result_boxes[:, 0:], 0, 2 * s, out=result_boxes[:, 0:])
result_boxes = result_boxes.astype(np.int32)
result_boxes = result_boxes[np.where((result_boxes[:,2]-result_boxes[:,0])*(result_boxes[:,3]-result_boxes[:,1]) > 0)]
return result_image, result_boxes
fold_number = 0
train_dataset = DatasetRetriever(
image_ids=df_folds[df_folds['fold'] != fold_number].index.values,
marking=marking,
transforms=get_train_transforms(),
test=False,
)
validation_dataset = DatasetRetriever(
image_ids=df_folds[df_folds['fold'] == fold_number].index.values,
marking=marking,
transforms=get_valid_transforms(),
test=True,
)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
import warnings
warnings.filterwarnings("ignore")
class Fitter:
def __init__(self, model, device, config):
self.config = config
self.epoch = 0
self.base_dir = f'./{config.folder}'
if not os.path.exists(self.base_dir):
os.makedirs(self.base_dir)
self.log_path = f'{self.base_dir}/log.txt'
self.best_summary_loss = 10**5
self.model = model
self.device = device
param_optimizer = list(self.model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.001},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
self.optimizer = torch.optim.AdamW(self.model.parameters(), lr=config.lr)
self.scheduler = config.SchedulerClass(self.optimizer, **config.scheduler_params)
self.log(f'Fitter prepared. Device is {self.device}')
opt_level = 'O1'
model, optimizer = amp.initialize(self.model, self.optimizer, opt_level=opt_level)
self.model = model
self.optimizer = optimizer
def fit(self, train_loader, validation_loader):
for e in range(self.config.n_epochs):
if self.config.verbose:
lr = self.optimizer.param_groups[0]['lr']
timestamp = datetime.utcnow().isoformat()
self.log(f'\n{timestamp}\nLR: {lr}')
t = time.time()
summary_loss = self.train_one_epoch(train_loader)
self.log(f'[RESULT]: Train. Epoch: {self.epoch}, summary_loss: {summary_loss.avg:.5f}, time: {(time.time() - t):.5f}')
self.save(f'{self.base_dir}/last-checkpoint.bin')
t = time.time()
summary_loss = self.validation(validation_loader)
self.log(f'[RESULT]: Val. Epoch: {self.epoch}, summary_loss: {summary_loss.avg:.5f}, time: {(time.time() - t):.5f}')
if summary_loss.avg < self.best_summary_loss:
self.best_summary_loss = summary_loss.avg
self.model.eval()
self.save(f'{self.base_dir}/best-checkpoint-{str(self.epoch).zfill(3)}epoch.bin')
for path in sorted(glob(f'{self.base_dir}/best-checkpoint-*epoch.bin'))[:-3]:
os.remove(path)
if self.config.validation_scheduler:
self.scheduler.step(metrics=summary_loss.avg)
self.epoch += 1
def validation(self, val_loader):
self.model.eval()
summary_loss = AverageMeter()
t = time.time()
for step, (images, targets, image_ids) in enumerate(val_loader):
if self.config.verbose:
if step % self.config.verbose_step == 0:
print(
f'Val Step {step}/{len(val_loader)}, ' + \
f'summary_loss: {summary_loss.avg:.5f}, ' + \
f'time: {(time.time() - t):.5f}', end='\r'
)
with torch.no_grad():
images = torch.stack(images)
batch_size = images.shape[0]
images = images.to(self.device).float()
boxes = [target['boxes'].to(self.device).float() for target in targets]
labels = [target['labels'].to(self.device).float() for target in targets]
loss, _, _ = self.model(images, boxes, labels)
summary_loss.update(loss.detach().item(), batch_size)
return summary_loss
def train_one_epoch(self, train_loader):
self.model.train()
summary_loss = AverageMeter()
t = time.time()
for step, (images, targets, image_ids) in enumerate(train_loader):
if self.config.verbose:
if step % self.config.verbose_step == 0:
print(
f'Train Step {step}/{len(train_loader)}, ' + \
f'summary_loss: {summary_loss.avg:.5f}, ' + \
f'time: {(time.time() - t):.5f}', end='\r'
)
images = torch.stack(images)
images = images.to(self.device).float()
batch_size = images.shape[0]
boxes = [target['boxes'].to(self.device).float() for target in targets]
labels = [target['labels'].to(self.device).float() for target in targets]
loss, _, _ = self.model(images, boxes, labels)
with amp.scale_loss(loss, self.optimizer) as scaled_loss:
scaled_loss.backward()
summary_loss.update(loss.detach().item(), batch_size)
if (step+1) % 8 == 0: # Wait for several backward steps
self.optimizer.step()
self.optimizer.zero_grad()
if self.config.step_scheduler:
self.scheduler.step()
return summary_loss
def save(self, path):
self.model.eval()
torch.save({
'model_state_dict': self.model.model.state_dict(),
'optimizer_state_dict': self.optimizer.state_dict(),
'scheduler_state_dict': self.scheduler.state_dict(),
'best_summary_loss': self.best_summary_loss,
'epoch': self.epoch,
'amp': amp.state_dict(),
}, path)
def load(self, path):
checkpoint = torch.load(path)
self.model.model.load_state_dict(checkpoint['model_state_dict'])
self.optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
self.scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
self.best_summary_loss = checkpoint['best_summary_loss']
self.epoch = checkpoint['epoch'] + 1
def log(self, message):
if self.config.verbose:
print(message)
with open(self.log_path, 'a+') as logger:
logger.write(f'{message}\n')
class TrainGlobalConfig:
num_workers = 4
batch_size = 4
n_epochs = 100
lr = 0.0002
folder = 'effdet6-baseline-1024-4x8-sa-fold'+str(fold_number)
verbose = True
verbose_step = 1
step_scheduler = False # do scheduler.step after optimizer.step
validation_scheduler = True # do scheduler.step after validation stage loss
SchedulerClass = torch.optim.lr_scheduler.ReduceLROnPlateau
scheduler_params = dict(
mode='min',
factor=0.5,
patience=5,
verbose=False,
threshold=0.0001,
threshold_mode='abs',
cooldown=0,
min_lr=1e-8,
eps=1e-08
)
def collate_fn(batch):
return tuple(zip(*batch))
def run_training():
device = torch.device('cuda:0')
net.to(device)
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=TrainGlobalConfig.batch_size,
sampler=RandomSampler(train_dataset),
pin_memory=False,
drop_last=True,
num_workers=TrainGlobalConfig.num_workers,
collate_fn=collate_fn,
)
val_loader = torch.utils.data.DataLoader(
validation_dataset,
batch_size=TrainGlobalConfig.batch_size,
num_workers=TrainGlobalConfig.num_workers,
shuffle=False,
sampler=SequentialSampler(validation_dataset),
pin_memory=False,
collate_fn=collate_fn,
)
fitter = Fitter(model=net, device=device, config=TrainGlobalConfig)
fitter.fit(train_loader, val_loader)
from effdet import get_efficientdet_config, EfficientDet, DetBenchTrain
from effdet.efficientdet import HeadNet
def get_net():
config = get_efficientdet_config('tf_efficientdet_d6')
net = EfficientDet(config, pretrained_backbone=False)
config.num_classes = 1
config.image_size = 1024
net.class_net = HeadNet(config, num_outputs=config.num_classes, norm_kwargs=dict(eps=.001, momentum=.01))
checkpoint = torch.load('pretrained/efficientdet_d6-51cb0132.pth')
load_state_dict(net, checkpoint)
return DetBenchTrain(net, config)
net = get_net()
run_training()