-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtests.rs
252 lines (236 loc) · 7.77 KB
/
tests.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
#![allow(unused_imports)]
#![allow(dead_code)]
#[cfg(test)]
use indxvec::{here, printing::*, Indices, Mutops, Printing, Vecops};
use medians::{*,algos::*};
use ran::*;
use core::cmp::{Ordering, Ordering::*};
use std::convert::From;
use std::error::Error;
use times::{benchf64, benchu64, benchu8, mutbenchf64, mutbenchu64};
#[test]
fn partbin() -> Result<(), Me> {
let mut data = [257_u64,9,8,7,6,5,4,3,2,1];
println!("Data: {}",data.gr());
let n = data.len();
let gtsub = data.part_binary( &(0..n), 3);
println!("Partitioned by bit 3: {},{}",data[..gtsub].gr(),data[gtsub..].gr());
println!("Median: {}",evenmedianu64(&mut data).gr());
Ok(())
}
#[test]
fn ftest() -> Result<(), Me> {
let a = vec![
100.0,
163.6170150950381,
224.6127142531872,
239.91368100304916,
345.1674002412572,
402.88833594261706,
423.6406741377381,
472.6292699764225,
487.23306678749594,
490.94434592125606,
511.16658896980687,
516.3472076946555,
523.052566308903,
563.6784311991111,
586.7283185517608,
633.5580942760708,
678.4956618813414,
708.2452516626092,
741.9710552209048,
763.476192474483,
768.6249939324011,
777.1952444919513,
785.2192860329102,
785.3178558989187,
858.0319001781837,
927.4228569429413,
952.453888947949,
1067.6089037099757,
];
eprintln!("Median: {} ", a.medf_unchecked());
Ok(())
}
#[test]
fn parting() -> Result<(), Me> {
let data = [
5.,8.,7.,6.,5.,4.,3.,2.,-f64::NAN,
1.,0.,1.,-2.,3.,4.,-5.,f64::NAN,f64::NAN,
6.,7.,7.,
];
println!("Data; {}",data.gr());
let len = data.len();
let mut refdata = data.ref_vec(0..data.len());
let (eqsub, gtsub) = <&mut [f64]>::part(&mut refdata, &(0..len), &mut <f64>::total_cmp);
println!("Pivot {}. {} items found equal to the pivot", data[0].yl(), (gtsub - eqsub).yl());
println!("Partitions:\n{}, {}, {}\n",
refdata[0..eqsub].gr(), //to_plainstr(),
refdata[eqsub..gtsub].gr(),
refdata[gtsub..len].gr()
);
let refindex = data.isort_refs(0..len, |a, b| a.total_cmp(b));
println!("isort_refs ascending sorted:\n{}", &refindex.gr());
let indx = data.isort_indexed(0..len, |a, b| b.total_cmp(a));
println!("isort_index (descending):\n{}", indx.gr());
println!("Unindexed:\n{}", indx.unindex(&data, true).gr());
Ok(())
}
#[test]
fn text() {
let song = "There was a *jolly* miller once who lived on the river Dee. \
From morn till night all day he sang, for a jolly old fellow was he; \
and this forever the burden of his song seemed to be: \
I care for nobody, no not I, and nobody cares for me. \
Tee hee heee, piddle piddledy dee, quoth he.";
let v = song.split(' ').collect::<Vec<_>>();
println!("{}", v.gr()); // Display
// v.mutisort(0..v.len(),|&a,&b| a.len().cmp(&b.len()));
println!(
"Insert log sorted by word lengths: {}",
v.isort_refs(0..v.len(),|&a,&b| a.len().cmp(&b.len())).gr()
);
println!(
"Median word(s) by length: {GR}{}{UN}",
(&v[..])
.median_by(&mut |a, b| a.len().cmp(&b.len()))
.expect("text(): median_by length failed\n")
);
println!("Sorted by lexicon: {}", v.sortm(true).gr());
println!(
"Median word(s) by lexicon: {GR}{}{UN}",
(&v[..])
.median_by(&mut <&str>::cmp)
.expect("text(): median_by lexicon failed\n")
);
}
#[test]
fn medf64() -> Result<(), Me> {
let v = [
9., 10., 18., 17., 16., 15., 14., 1., 2., 3., 4., 5., 6., 7., 8., 17., 10., 11., 12., 13.,
14., 15., 16., 18., 9.,
];
let weights = [
1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20.,
21., 22., 23., 24., 25.,
];
println!("Data: {}", v.gr());
println!("Weights: {}", weights.gr());
let len = v.len();
let mut vr = v.ref_vec(0..len);
println!(
"max: {}",
extremum_refs(&vr, 0..len, &mut |a: &f64, b: &f64| b.total_cmp(a)).gr()
);
println!(
"max2: {}",
best_two_refs(&vr, 0..len, &mut |a: &f64, b: &f64| b.total_cmp(a)).gr()
);
let (eqsub, gtsub) = <&mut [f64]>::part(&mut vr, &(0..v.len()), &mut <f64>::total_cmp);
println!("Partitioning (pivot {}, commas separate the subranges): {}", v[0].yl(),(eqsub,gtsub).gr());
println!("{GR}[{}, {}, {}]{UN}\nNumber of items equal to the pivot {}",
vr[0..eqsub].to_plainstr(),
vr[eqsub..gtsub].to_plainstr(),
vr[gtsub..len].to_plainstr(),
(gtsub - eqsub).yl()
);
let median = v.medf_checked()?;
let mad = v.madf(median);
println!("Median±mad: {GR}{}±{}{UN}", median, mad);
println!("Mean: {GR}{}{UN}", v.iter().sum::<f64>()/(len as f64));
println!(
"Weighted median: {GR}{}{UN} ",
v.medf_weighted(&weights, 0.00001)?
);
let prodsum:f64 = v.iter().zip(weights.iter()).map(|(x,w)| x*w ).sum();
println!("Weighted mean: {GR}{}{UN}", prodsum/weights.iter().sum::<f64>());
Ok(())
}
#[test]
fn correlation() -> Result<(), Me> {
let v1 = ranv_f64(100).expect("Random vec1 generation failed"); // random vector
let v2 = ranv_f64(100).expect("Random vec2 generation failed"); // random vector
println!("medf_correlation: {}", v1.medf_correlation(&v2)?.gr());
Ok(())
}
#[test]
fn errors() -> Result<(), Me> {
let n = 10_usize; // number of vectors to test for each magnitude
// set_seeds(33333);
for d in [10, 50, 100, 1000, 10000, 100000] {
let mut error = 0_i64;
trait Eq: PartialEq<Self> {}
impl Eq for f64 {}
for _ in 0..n {
let Ok(mut v) = ranv_u64(d) else {
return merror("other", "Random vec genertion failed");
};
let (m1,m2) = medu64(&mut v)?;
error += qbalance(&v, &((m1 as f64+m2 as f64)/2.0), |&f| f as f64);
}
println!("Even length {GR}{d}{UN}, repeats: {GR}{n}{UN}, errors: {GR}{error}{UN}");
error = 0_i64;
for _ in 0..n {
let Ok(mut v) = ranv_u64(d + 1) else {
return merror("other", "Random vec genertion failed");
};
// v
// .as_slice()
// .medf_unchecked();
let (m1,m2) = medu64(&mut v)?;
error += qbalance(&v, &((m1 as f64+m2 as f64)/2.0), |&f| f as f64);
}
println!(
"Odd length {GR}{}{UN}, repeats: {GR}{n}{UN}, errors: {GR}{error}{UN}",
d + 1
);
}
Ok(())
}
#[test]
fn comparison() {
println!("Comparison tests running, please wait....");
const NAMES: [&str; 5] = ["median_by","medf_unchecked","uqmedian","medianu64","medu64"];
const CLOSURESU64: [fn(&mut [u64]); 5] = [
|v: &mut [_]| {
v.median_by(&mut <u64>::cmp)
.expect("median_by closure failed");
},
|v: &mut [_]| {
let vf:Vec<f64> = v.iter().map(|&x| x as f64).collect();
vf.medf_unchecked();
// .expect("medf_checked found NaN");
},
|v: &mut [_]| { // already in u64, so using identity quantifier
v.uqmedian(|&x| x)
.expect("uqmedian error");
},
|v: &mut [_]| {
medianu64(v)
.expect("uqmedian error");
},
|v: &mut [_]| {
medu64(v)
.expect("uqmedian error");
}
/*
|v: &[_]| {
let mut sorted: Vec<&f64> = v.iter().collect();
sorted.sort_unstable_by(|&a, &b| a.total_cmp(b));
// sorted[sorted.len()/2];
},
|v: &[_]| {
v.qmedian_by(&mut <f64>::total_cmp,|&x| x)
.expect("even median closure failed");
},
*/
/*
|v: &[_]| {
medianu8(v)
.expect("medianu8 closure failed");
}
*/
];
mutbenchu64(100000..100010, 1, 10, &NAMES, &CLOSURESU64);
}