forked from cburstedde/p4est
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_brick2.c
494 lines (470 loc) · 17.7 KB
/
test_brick2.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
/*
This file is part of p4est.
p4est is a C library to manage a collection (a forest) of multiple
connected adaptive quadtrees or octrees in parallel.
Copyright (C) 2010 The University of Texas System
Additional copyright (C) 2011 individual authors
Written by Carsten Burstedde, Lucas C. Wilcox, and Tobin Isaac
p4est is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
p4est is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with p4est; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#ifndef P4_TO_P8
#include <p4est.h>
#else
#include <p8est.h>
#endif
static inline p4est_locidx_t
qidx (p4est_locidx_t m, p4est_locidx_t n,
p4est_locidx_t i, p4est_locidx_t j, p4est_locidx_t k)
{
#ifndef P4_TO_P8
return m * j + i;
#else
return m * n * k + m * j + i;
#endif
}
static void
#ifndef P4_TO_P8
check_brick (p4est_connectivity_t * conn, int mi, int ni,
int periodic_a, int periodic_b)
#else
check_brick (p8est_connectivity_t * conn, int mi, int ni, int pi,
int periodic_a, int periodic_b, int periodic_c)
#endif
{
p4est_topidx_t m = (p4est_topidx_t) mi;
p4est_topidx_t n = (p4est_topidx_t) ni;
int i;
p4est_topidx_t ti, tj, tk = 0;
p4est_topidx_t *tree_to_vertex = conn->tree_to_vertex;
p4est_topidx_t *tree_to_corner = conn->tree_to_corner;
p4est_topidx_t *tree_to_tree = conn->tree_to_tree;
int8_t *tree_to_face = conn->tree_to_face;
p4est_topidx_t *ctt_offset = conn->ctt_offset;
p4est_topidx_t *corner_to_tree = conn->corner_to_tree;
int8_t *corner_to_corner = conn->corner_to_corner;
p4est_topidx_t num_trees = conn->num_trees;
p4est_topidx_t num_vertices = conn->num_vertices;
p4est_topidx_t num_corners = conn->num_corners;
double *vertices = conn->vertices;
double *vertex[P4EST_CHILDREN];
int8_t *vert_counter, *corn_counter;
p4est_topidx_t *quad_counter;
int8_t total, face1, face2, face3, corn1;
p4est_topidx_t tx, ty, ttree1, ttree2, ttree3, tcorn1;
p4est_topidx_t tz = 0;
p4est_topidx_t diffx, diffy;
#ifdef P4_TO_P8
p4est_topidx_t p = (p4est_topidx_t) pi;
p4est_topidx_t *tree_to_edge = conn->tree_to_edge;
p4est_topidx_t *ett_offset = conn->ett_offset;
p4est_topidx_t *edge_to_tree = conn->edge_to_tree;
int8_t *edge_to_edge = conn->edge_to_edge;
p4est_topidx_t num_edges = conn->num_edges;
int8_t *edge_counter;
int8_t edge1, edge2;
p4est_topidx_t tedge1, tedge2;
p4est_topidx_t diffz;
#endif
SC_CHECK_ABORT (num_trees > 0, "no trees");
#ifndef P4_TO_P8
SC_CHECK_ABORT (num_trees == m * n, "bad dimensions");
SC_CHECK_ABORT (num_vertices == (m + 1) * (n + 1),
"wrong number of vertices");
#else
SC_CHECK_ABORT (num_trees == m * n * p, "bad dimensions");
SC_CHECK_ABORT (num_vertices == (m + 1) * (n + 1) * (p + 1),
"wrong number of vertices");
#endif
quad_counter = P4EST_ALLOC (p4est_topidx_t, num_trees);
memset (quad_counter, -1, num_trees * sizeof (p4est_topidx_t));
vert_counter = P4EST_ALLOC_ZERO (int8_t, num_vertices);
corn_counter = NULL;
if (num_corners > 0) {
corn_counter = P4EST_ALLOC_ZERO (int8_t, num_corners);
}
#ifdef P4_TO_P8
edge_counter = NULL;
if (num_edges > 0) {
edge_counter = P4EST_ALLOC_ZERO (int8_t, num_edges);
}
#endif
for (ti = 0; ti < num_trees; ti++) {
for (i = 0; i < P4EST_CHILDREN; i++) {
vertex[i] = vertices + 3 * tree_to_vertex[ti * P4EST_CHILDREN + i];
vert_counter[tree_to_vertex[ti * P4EST_CHILDREN + i]]++;
if (num_corners > 0 && tree_to_corner[ti * P4EST_CHILDREN + i] != -1) {
corn_counter[tree_to_corner[ti * P4EST_CHILDREN + i]]++;
}
}
tx = (p4est_topidx_t) vertex[0][0];
ty = (p4est_topidx_t) vertex[0][1];
#ifdef P4_TO_P8
tz = (p4est_topidx_t) vertex[0][2];
#endif
SC_CHECK_ABORT (tx < m, "vertex coordinates out of range");
SC_CHECK_ABORT (ty < n, "vertex coordinates out of range");
#ifdef P4_TO_P8
SC_CHECK_ABORT (tz < p, "vertex coordinates out of range");
#endif
quad_counter[qidx (m, n, tx, ty, tz)] = ti;
for (i = 1; i < P4EST_CHILDREN; i++) {
tx = (p4est_locidx_t) (vertex[i][0] - vertex[0][0]);
ty = (p4est_locidx_t) (vertex[i][1] - vertex[0][1]);
#ifdef P4_TO_P8
tz = (p4est_locidx_t) (vertex[i][2] - vertex[0][2]);
#endif
if ((i & 1) == 1) {
SC_CHECK_ABORT (tx == 1, "non-unit vertex difference");
}
else {
SC_CHECK_ABORT (tx == 0, "non-unit vertex difference");
}
if (((i >> 1) & 1) == 1) {
SC_CHECK_ABORT (ty == 1, "non-unit vertex difference");
}
else {
SC_CHECK_ABORT (ty == 0, "non-unit vertex difference");
}
#ifdef P4_TO_P8
if ((i >> 2) == 1) {
SC_CHECK_ABORT (tz == 1, "non-unit vertex difference");
}
else {
SC_CHECK_ABORT (tz == 0, "non-unit vertex difference");
}
#endif
}
#ifdef P4_TO_P8
if (num_edges > 0) {
for (i = 0; i < P8EST_EDGES; i++) {
if (tree_to_edge[ti * P8EST_EDGES + i] != -1) {
edge_counter[tree_to_edge[ti * P8EST_EDGES + i]]++;
}
}
}
#endif
}
for (ti = 0; ti < m; ti++) {
for (tj = 0; tj < n; tj++) {
#ifdef P4_TO_P8
for (tk = 0; tk < p; tk++) {
#endif
SC_CHECK_ABORT (quad_counter[qidx (m, n, ti, tj, tk)] != -1,
"grid points has no tree");
#ifdef P4_TO_P8
}
#endif
}
}
for (ti = 0; ti < num_vertices; ti++) {
tx = (p4est_topidx_t) vertices[ti * 3];
ty = (p4est_topidx_t) vertices[ti * 3 + 1];
#ifdef P4_TO_P8
tz = (p4est_topidx_t) vertices[ti * 3 + 2];
#endif
total = P4EST_CHILDREN;
if (tx == m || tx == 0) {
total /= 2;
}
if (ty == n || ty == 0) {
total /= 2;
}
#ifdef P4_TO_P8
if (tz == p || tz == 0) {
total /= 2;
}
#endif
SC_CHECK_ABORT (vert_counter[ti] == total,
"vertex has too many or too few trees");
}
if (num_corners > 0) {
for (ti = 0; ti < num_corners; ti++) {
SC_CHECK_ABORT (corn_counter[ti] == P4EST_CHILDREN,
"corner has too many or too few trees");
SC_CHECK_ABORT (ctt_offset[ti] == P4EST_CHILDREN * ti,
"corner offset incorrect");
}
SC_CHECK_ABORT (ctt_offset[ti] == P4EST_CHILDREN * ti,
"corner offset incorrect");
}
#ifdef P4_TO_P8
if (num_edges > 0) {
for (ti = 0; ti < num_edges; ti++) {
SC_CHECK_ABORT (edge_counter[ti] == 4,
"edge has too many or too few trees");
SC_CHECK_ABORT (ett_offset[ti] == 4 * ti, "edge offset incorrect");
}
SC_CHECK_ABORT (ett_offset[ti] == 4 * ti, "edge offset incorrect");
}
#endif
for (ti = 0; ti < m; ti++) {
for (tj = 0; tj < n; tj++) {
#ifdef P4_TO_P8
for (tk = 0; tk < p; tk++) {
#endif
ttree1 = quad_counter[qidx (m, n, ti, tj, tk)];
for (face1 = 0; face1 < P4EST_FACES; face1++) {
ttree2 = tree_to_tree[ttree1 * P4EST_FACES + face1];
face2 = tree_to_face[ttree1 * P4EST_FACES + face1];
if (!periodic_a &&
((face1 == 0 && ti == 0) || (face1 == 1 && ti == m - 1))) {
SC_CHECK_ABORT (ttree2 == ttree1 && face2 == face1,
"boundary tree without boundary face");
}
else if (!periodic_b &&
((face1 == 2 && tj == 0) || (face1 == 3 && tj == n - 1))) {
SC_CHECK_ABORT (ttree2 == ttree1 && face2 == face1,
"boundary tree without boundary face");
}
#ifdef P4_TO_P8
else if (!periodic_c &&
((face1 == 4 && tk == 0) || (face1 == 5 && tk == p - 1))) {
SC_CHECK_ABORT (ttree2 == ttree1 && face2 == face1,
"boundary tree without boundary face");
}
#endif
else {
switch (face1) {
case 0:
ttree3 = quad_counter[qidx (m, n, (ti + m - 1) % m, tj, tk)];
break;
case 1:
ttree3 = quad_counter[qidx (m, n, (ti + 1) % m, tj, tk)];
break;
case 2:
ttree3 = quad_counter[qidx (m, n, ti, (tj + n - 1) % n, tk)];
break;
case 3:
ttree3 = quad_counter[qidx (m, n, ti, (tj + 1) % n, tk)];
break;
#ifdef P4_TO_P8
case 4:
ttree3 = quad_counter[qidx (m, n, ti, tj, (tk + p - 1) % p)];
break;
case 5:
ttree3 = quad_counter[qidx (m, n, ti, tj, (tk + 1) % p)];
break;
#endif
default:
SC_ABORT_NOT_REACHED ();
}
face3 = face1 ^ 1;
SC_CHECK_ABORT (ttree3 == ttree2 && face2 == face3,
"tree has incorrect neighbor");
ttree3 = tree_to_tree[ttree2 * P4EST_FACES + face2];
SC_CHECK_ABORT (ttree1 == ttree3, "tree mismatch");
face3 = tree_to_face[ttree2 * P4EST_FACES + face2];
SC_CHECK_ABORT (face1 == face3, "face mismatch");
}
}
#ifdef P4_TO_P8
if (num_edges > 0) {
for (edge1 = 0; edge1 < P8EST_EDGES; edge1++) {
if ((!periodic_b &&
(((edge1 == 0 || edge1 == 2) && (tj == 0)) ||
((edge1 == 1 || edge1 == 3) && (tj == n - 1)))) ||
(!periodic_c &&
(((edge1 == 0 || edge1 == 1) && (tk == 0)) ||
((edge1 == 2 || edge1 == 3) && (tk == p - 1))))) {
SC_CHECK_ABORT (tree_to_edge[ttree1 * P8EST_EDGES + edge1] ==
-1, "boundary tree without boundary edge");
}
else if ((!periodic_a &&
(((edge1 == 4 || edge1 == 6) && (ti == 0)) ||
((edge1 == 5 || edge1 == 7) && (ti == m - 1)))) ||
(!periodic_c &&
(((edge1 == 4 || edge1 == 5) && (tk == 0)) ||
((edge1 == 6 || edge1 == 7) && (tk == p - 1))))) {
SC_CHECK_ABORT (tree_to_edge[ttree1 * P8EST_EDGES + edge1] ==
-1, "boundary tree without boundary edge");
}
else if ((!periodic_a &&
(((edge1 == 8 || edge1 == 10) && (ti == 0)) ||
((edge1 == 9 || edge1 == 11) && (ti == m - 1)))) ||
(!periodic_b &&
(((edge1 == 8 || edge1 == 9) && (tj == 0)) ||
((edge1 == 10 || edge1 == 11) && (tj == n - 1))))) {
SC_CHECK_ABORT (tree_to_edge[ttree1 * P8EST_EDGES + edge1] ==
-1, "boundary tree without boundary edge");
}
else {
tedge1 = tree_to_edge[ttree1 * P8EST_EDGES + edge1];
SC_CHECK_ABORT (edge_to_tree[4 * tedge1 + (3 - (edge1 % 4))] ==
ttree1, "edge_to_tree mismatch");
SC_CHECK_ABORT (edge_to_edge[4 * tedge1 + (3 - (edge1 % 4))] ==
edge1, "edge_to_edge mismatch");
ttree2 = tree_to_tree[ttree1 * 6 + p8est_edge_faces[edge1][0]];
edge2 = edge1 ^ 1;
tedge2 = tree_to_edge[ttree2 * P8EST_EDGES + edge2];
SC_CHECK_ABORT (tedge1 == tedge2,
"face neighbor trees do not share edge");
SC_CHECK_ABORT (edge_to_tree[4 * tedge1 + (3 - (edge2 % 4))] ==
ttree2,
"edge does not recognize face neighbors");
SC_CHECK_ABORT (edge_to_edge[4 * tedge1 + (3 - (edge2 % 4))] ==
edge2,
"edge does not recognize face neighbors' edges");
ttree2 = tree_to_tree[ttree1 * 6 + p8est_edge_faces[edge1][1]];
edge2 = edge1 ^ 2;
tedge2 = tree_to_edge[ttree2 * P8EST_EDGES + edge2];
SC_CHECK_ABORT (tedge1 == tedge2,
"face neighbor trees do not share edge");
SC_CHECK_ABORT (edge_to_tree[4 * tedge1 + (3 - (edge2 % 4))] ==
ttree2,
"edge does not recognize face neighbors");
SC_CHECK_ABORT (edge_to_edge[4 * tedge1 + (3 - (edge2 % 4))] ==
edge2,
"edge does not recognize face neighbors' edges");
ttree2 =
tree_to_tree[ttree2 * 6 + p8est_edge_faces[edge1 ^ 2][0]];
edge2 = edge1 ^ 3;
tedge2 = tree_to_edge[ttree2 * P8EST_EDGES + edge2];
SC_CHECK_ABORT (tedge1 == tedge2,
"diagonal trees do not share edge");
SC_CHECK_ABORT (edge_to_tree[4 * tedge1 + (3 - (edge2 % 4))] ==
ttree2,
"edge does not recognize diagonal trees");
SC_CHECK_ABORT (edge_to_edge[4 * tedge1 + (3 - (edge2 % 4))] ==
edge2,
"edge does not recognize diagonal trees' edges");
}
}
}
#endif
if (num_corners > 0) {
for (corn1 = 0; corn1 < P4EST_CHILDREN; corn1++) {
if ((!periodic_a &&
(((corn1 & 1) == 0 && ti == 0) ||
((corn1 & 1) == 1 && ti == m - 1))) ||
(!periodic_b &&
((((corn1 >> 1) & 1) == 0 && tj == 0) ||
(((corn1 >> 1) & 1) == 1 && tj == n - 1))) ||
#ifdef P4_TO_P8
(!periodic_c &&
(((corn1 >> 2) == 0 && tk == 0) ||
((corn1 >> 2) == 1 && tk == p - 1))) ||
#endif
0) {
SC_CHECK_ABORT (tree_to_corner[ttree1 * P4EST_CHILDREN + corn1]
== -1, "boundary tree without boundary corner");
}
else {
tcorn1 = tree_to_corner[ttree1 * P4EST_CHILDREN + corn1];
SC_CHECK_ABORT (corner_to_tree
[tcorn1 * P4EST_CHILDREN +
(P4EST_CHILDREN - 1 - corn1)] == ttree1,
"corner_to_tree mismatch");
SC_CHECK_ABORT (corner_to_corner
[tcorn1 * P4EST_CHILDREN + P4EST_CHILDREN - 1 -
corn1] == corn1, "corner_to_corner mismatch");
for (i = 0; i < P4EST_CHILDREN; i++) {
ttree2 = corner_to_tree[tcorn1 * P4EST_CHILDREN + i];
tx =
(p4est_topidx_t) vertices[3 *
tree_to_vertex[ttree2 *
P4EST_CHILDREN]];
ty = (p4est_topidx_t)
vertices[3 * tree_to_vertex[ttree2 * P4EST_CHILDREN] + 1];
#ifdef P4_TO_P8
tz = (p4est_topidx_t)
vertices[3 * tree_to_vertex[ttree2 * P4EST_CHILDREN] + 2];
#endif
diffx = (i & 1) - ((P4EST_CHILDREN - 1 - corn1) & 1);
diffy =
((i >> 1) & 1) - (((P4EST_CHILDREN - 1 - corn1) >> 1) & 1);
#ifdef P4_TO_P8
diffz = (i >> 2) - ((P4EST_CHILDREN - 1 - corn1) >> 2);
#endif
SC_CHECK_ABORT ((ti + diffx + m) % m == tx,
"unexpected trees around corner");
SC_CHECK_ABORT ((tj + diffy + n) % n == ty,
"unexpected trees around corner");
#ifdef P4_TO_P8
SC_CHECK_ABORT ((tk + diffz + p) % p == tz,
"unexpected trees around corner");
#endif
}
}
}
}
#ifdef P4_TO_P8
}
#endif
}
}
#ifdef P4_TO_P8
if (num_edges > 0) {
P4EST_FREE (edge_counter);
}
#endif
P4EST_FREE (vert_counter);
if (num_corners > 0) {
P4EST_FREE (corn_counter);
}
P4EST_FREE (quad_counter);
}
int
main (int argc, char **argv)
{
int i, j;
int l, m;
sc_MPI_Comm mpicomm;
int mpiret;
int size, rank;
p4est_connectivity_t *conn;
#ifdef P4_TO_P8
int k, n;
#endif
mpiret = sc_MPI_Init (&argc, &argv);
SC_CHECK_MPI (mpiret);
mpicomm = sc_MPI_COMM_WORLD;
mpiret = sc_MPI_Comm_size (mpicomm, &size);
SC_CHECK_MPI (mpiret);
mpiret = sc_MPI_Comm_rank (mpicomm, &rank);
SC_CHECK_MPI (mpiret);
sc_init (mpicomm, 1, 1, NULL, SC_LP_DEFAULT);
p4est_init (NULL, SC_LP_DEFAULT);
for (i = 1; i <= 5; i++) {
for (j = 1; j <= 5; j++) {
#ifdef P4_TO_P8
for (k = 1; k <= 5; k++) {
#endif
for (l = 0; l < 2; l++) {
for (m = 0; m < 2; m++) {
#ifdef P4_TO_P8
for (n = 0; n < 2; n++) {
#endif
#ifndef P4_TO_P8
conn = p4est_connectivity_new_brick (i, j, l, m);
check_brick (conn, i, j, l, m);
#else
conn = p4est_connectivity_new_brick (i, j, k, l, m, n);
check_brick (conn, i, j, k, l, m, n);
#endif
p4est_connectivity_destroy (conn);
#ifdef P4_TO_P8
}
#endif
}
}
#ifdef P4_TO_P8
}
#endif
}
}
/* clean up and exit */
sc_finalize ();
mpiret = sc_MPI_Finalize ();
SC_CHECK_MPI (mpiret);
return 0;
}