This repository has been archived by the owner on Sep 12, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtest_dim.py
125 lines (108 loc) · 4.18 KB
/
test_dim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
# -*- coding: utf-8 -*-
import argparse
import time
import numpy as np
import onlinecp.algos as algos
import onlinecp.utils.gendata as gd
import onlinecp.utils.feature_functions as feat
parser = argparse.ArgumentParser()
parser.add_argument('algo', choices=['newmaRFF', 'newmaFF', 'newmaOPU', 'MA', 'ScanB'],
help='algorithm to use for evaluation')
args = parser.parse_args()
algo = args.algo
# parameters for data
num_tests = 10
dims = np.ceil(10 ** np.linspace(1, 5, num_tests)) # dims to test
n = 12000
nb_change = 1
k = 20
std_mean = 0.2
# parameters for algorithms
save_res = True
window_size = 250
N = 3
ff, ff2 = algos.select_optimal_parameters(window_size)
if algo == 'newmaOPU':
m = int(10 * (ff + ff2)**(-2))
else:
m = int(0.25 * (ff + ff2)**(-2))
print(algo, m)
thresh_ff = ff2
np.random.seed(12345)
running_times = []
for d_ind in range(num_tests):
d = int(dims[d_ind])
sigmasq = d
print('Performing test ', d_ind + 1, ' over ', num_tests, ' d = ', d)
# generate data
X, ground_truth = gd.stream_GMM(d=d, n=n, nb_change=nb_change, std_mean=std_mean, concentration_wishart=10, k=k)
if algo == 'ScanB':
print('Scan-B')
ocpobj = algos.ScanB(X[0], kernel_func=lambda x, y: feat.gauss_kernel(x, y, np.sqrt(sigmasq)),
window_size=window_size, nbr_windows=N, adapt_forget_factor=thresh_ff, store_values=False)
t = time.time()
ocpobj.apply_to_data(X) # actual computations
time_method = time.time() - t
print('time:', time_method)
elif algo == 'MA':
print('MA')
W, _ = feat.generate_frequencies(m, d, data=X[:100])
updt_func = lambda x: feat.fourier_feat(x, W)
ocpobj = algos.MA(X[0, :], window_size=window_size, feat_func=updt_func, adapt_forget_factor=thresh_ff,
store_values=False)
t = time.time()
ocpobj.apply_to_data(X) # actual computations
time_method = time.time() - t
print('time:', time_method)
else:
if algo == 'newmaOPU':
print('OPU')
from lightonml.encoding.base import BinaryThresholdEncoder
from lightonopu.opu import OPU
from lightonopu import types
opu = OPU(n_components=m, disable_pbar=True, verbose_level=0,
features_fmt=types.FeaturesFormat.lined,
dmd_strategy=types.DmdRoiStrategy.full)
opu.open()
encoder = BinaryThresholdEncoder(threshold_enc=125)
mi = np.min(X.flatten()) # rescale to 0 255
Ma = np.max(X.flatten())
X = 255 * ((X - mi) / (Ma - mi))
t = time.time()
X = opu.transform(encoder.transform(X))
def updt_func(x): return x
elif algo == 'newmaFF':
print('FF')
from onlinecp.utils.fastfood import Fastfood
fastfood = Fastfood(n_components=m)
fastfood.fit(X)
t = time.time()
X = fastfood.transform(X)
def updt_func(x): return x
else:
print('RFF')
W, _ = feat.generate_frequencies(m, d, data=X[:100])
updt_func = lambda x: feat.fourier_feat(x, W)
t = time.time()
ocpobj = algos.NEWMA(X[0], forget_factor=ff, forget_factor2=ff2, feat_func=updt_func,
adapt_forget_factor=thresh_ff, store_values=False)
ocpobj.apply_to_data(X) # actual computations
time_method = time.time() - t
print('Execution time: ', time_method)
if algo == 'newmaOPU':
opu.device.close()
running_times.append(time_method)
# save results for later plot
np.savez('test_dim_algo_{}_12k.npz'.format(algo), dims=dims, running_times=np.array(running_times))
"""
if save_res:
np.save('../npz4plots/test_dim__{}_algo_{}.npz'.format(d, algo),
{'dist': np.array([stat[0] for stat in ocpobj.stat_stored]),
'thres': np.array([stat[1] for stat in ocpobj.stat_stored]),
'result': np.array([stat[2] for stat in ocpobj.stat_stored]),
'gt': ground_truth,
'd': d,
'n': n,
'm': m,
'time': time_method})
"""